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B pabore paccmoTpen (asossrit mepexox mist SU(3)
KaxuOpoBouHOTO 0T (6e3 kBapkoB). [lokazaHo, 4To
(ha30BBI TEPEX0 MPOUCXOINT U3-3a TOTO, UTO MPH
BBICOKHX TEMIIEpATypax CTaTCyMMa BBIYHCIIAETCA Kak
JUIS Ta3a TIIF0OHOB, TOT/IA KaK IIPU HU3KOH TeMmeparype
KaK CyMMa I10 YPOBHSAM 3HEPIUU KOPPEIUPOBAHHBIX
KBaHTOBBIX cocTosiHui SU (3) KaauOpoBOYHOTO MOJISL.
.KoppenupoBaHnHbie KBAHTOBBIE COCTOSIHUS JUISI CUIIBHO
B3aUMO/ICHCTBYIOIINX MOJIEH ONPENENSIOTCS KaK
HenepTypOaTUBHBIE KBAHTOBBIE COCTOSIHUS CUIIBHO
B3aUMO/JICHCTBYIOIUX MTOJIeH. DHEPreTHYeCKUil CIeKTp
9THX KBAaHTOBBIX COCTOSIHU SBISIETCS AUCKPETHBIM.
JlaHa omeHKa HI)KHEH TpaHUIbI TEMIIEpaTypsl (Ga3oBOro
Hepexoa IMyTeM CPaBHEHHS CPeTHEH SHEPTHUH [UIs
NnepTypOAaTHBHOTO M HETIEPTYPOATHBHOTO PEKUMOB (LI
r000J1a HaXOSIIETOCs B TETITIOBOM PaBHOBECHH C
TepmocTaToM). [TokasaHo, 4TO 3Ta BeTMYMHA CBSA3aHA C
SHEPrUeH HU3IIEro YHEPreTHIECKOr0 COCTOSHUS. DTa
SHEpTHs BRIYHCICHA B CKAISIPHOI MO/IEIH TITI000Ia.
Ecnu Mb1 ycTranHoBHM Maccy rmo6omna ~ 1.5-10°MeV |, o
OKa3bIBAETCS, YTO COOTBETCTRYIOIIEE 3HAUCHHE
KOHCTAHTHI CBSI3H JISKUT B HENEpTypOATHBHOMN 00IacTH.

KitroueBrie cioBa: (a3oBbIil epexo, TI00T
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The phase transition for US(3) gauge field (without
quarks) is considered. It is shown that the phase
transition is due to the fact that at high temperatures the
partition function should be calculated as for a gas of
gluons, whereas at low temperatures as the sum over
energy levels of correlated quantum states of SU(3)
gauge field. A correlated quantum state for strongly
interacting fields is defined as a nonperturbative
guantum state of strongly interacting fields. The energy
spectrum of these quantum states are discrete one. A
lower bound of the phase transition temperature by
comparing of the average energy for the perturbative and
nonperturbative regimes is estimated (for glueball being
in thermal equilibrium with the thermostat). It is shown
that this quantity is associated with a mass gap. In a
scalar model of glueball its energy is calculated. It is
shown that this energy is the mass gap. If we set the
glueball mass ~ 1.5-10*MeV then it is found that the
corresponding value of coupling constant lies in the
nonperturbative region.

Keywords: phase transition, nonperturbative
quantization, glueball, mass gap.

One of the most interesting predictions of QCD is a phase transition at some

critical temperature to a new phase of strongly interacting fields: the quark-gluon

plasma. The quark-gluon plasma is a state of strongly interacting matter (with the

quarks and gluons) where they are not longer confined to color neutral entities of

hadronic size. The quark-gluon plasma is a state of matter at temperatures above

the phase transition temperature and this state is characterized by a weak coupling

constant g <1. At the temperatures below the phase transition temperature we have

strong coupling constant g =1 and we should use nonperturbative technique to
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describe quantum fields in this region. The various methods can be employed to
describe the thermodynamics of the high temperature quark-gluon plasma (for
review, see [1-4] and references therein).

Currently one of the biggest problems (in our opinion it is a challenge) in
quantum field theory is the problem of a nonperturbative quantization. The problem
Is that for strongly interacting fields we cannot apply quantization recipes designed
for weakly interacting fields. From a mathematical point of view it means that in
this case the Feynman diagram technique cannot be applied. From a physical point
of view it means that quantum strongly interacting fields cannot be presented as a
cloud of interacting quanta. Rather such field can be compared with a turbulent
fluid flow. In this flow there is a statistically fluctuating field of velocities. The
velocities in the two sufficiently close points are correlated with each other. It was
exactly what we have for strongly interacting quantum fields: the value of the
quantum field in the two close enough spacelike points are correlated with each
other. It means that the correlation function of these fields (2-point Green's
function) in two sufficiently close spacelike points is nonzero. It has been noted by
W. Heisenberg [5]. Evidently only one difference between quantum fields and
turbulent fluid is that in the quantum case corresponding quantum states will be
quantized. As it should be in quantum theory.

The quantum states describing the distribution of strongly interacting
quantum fields will be called as quantum correlated states of strongly interacting
fields. Briefly, quantum correlated states. For simplicity, in the future we will
consider only the SU(3) non-Abelian gauge field without quarks.

The main goal of our research is a qualitative explanation of the phase
transition for gluon field as a transition from the statistics of a gas of
nonperturbative interacting gluons to the statistics nonperturbative correlated

quantum states of strongly interacting SU(3) gauge field.
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Quialitative evaluation of the phase transition temperature
Thus we assume that in the strong coupling regime, i.e. when the coupling
constant g =1, the quantum SU(3) gauge field forms a kind of correlated

distribution of the fluctuating field in space. Such distributions form a discrete
spectrum. The discreteness means that the energy spectrum of such distributions is
discrete one. Note the following features of this point of view: the energy density of
such distribution of quantum field has to tend fast enough to zero at infinity that the
energy of the field in whole space would be finite. It means that such fields are
finite in space. For example, it may be a glueball. In this case above mentioned
discrete spectrum of energy means that there is a mass spectrum of the glueball.
The lowest energy will be called a mass gap.

If bring the glueball in thermal contact with the thermostat then the glueball
can be considered as a statistical system described by a certain temperature and the
fluctuating energy.

As it is known the problem of phase transition in the gluon plasma is that the
behavior of the plasma for small and large temperatures is essentially different.
General expectation is that this difference is due to the fact that at low temperatures
the quantum description of the gluon field should be carried out by a non-
perturbative way while at high temperatures the description of quantum gluon field
should be carried out by the perturbative way.

For statistical calculations at high temperatures we will apply the statistics of
gas of interacting gluons. In the limit g — 0 we have the partition function

[e¢]

YA pert — Z e_
n=0

Where A is the energy of noninteracting gluons. After that by the standard

ho
KT

1)

way we obtain the Planck's formula for energy density (as for photons)
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h >
7208 etk _q (2)

u(w,T) =

At small temperature the statistical sum looks as follows

o _En
Znonpert = Ze o (3)
n=0

Here E, is the energy of n-th quantum correlated state; E, =A is a mass

gap. The calculation of E, is a problem of nonperturbative quantization of strongly

nonlinear fields (in our case it is SU(3) non-Abelian gauge field). This problem is
extremely difficult. Below we will give an approximate calculation of the bound
state of glueball using a scalar approximation for 2nd and 4th Green's functions.

Thus at low temperatures we should use the expression (3) but for high
temperatures the expression (1). The phenomenon of phase transition is that at
some temperature the mean values of energy corresponding to statistical sums (1)
and (3) are of the same order of magnitude. It means that there is a transition from
the description of a quantum field on nonperturbative language to the description of
a quantum field on perturbative language. It is essentially important to note that E,
cannot be calculated using Feynman diagram technique.

Let us consider glueball being in thermal equilibrium with the thermostat. To
describe the phenomenon of phase transition in this thermodynamic system we will
consider two limiting cases. In the 1st case we have the glueball filled with weakly
interacting gluons (perturbative case). The situation in this case is completely
similar to statistics of the photons filling a certain box. With one exception:
photons do not interact with each other. In the 2nd case the glueball can be in one

of E, energy levels. The probability to be in one of E,is defined by standard

methods of statistical mechanics.
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The calculation of the mean value of energy density for weakly interacting
gluon gas in the limit when the coupling constant g — 0 could be made on the

usual way (i.e. perturbative way) and gives us the standard formula for the total

density of the Planck energy

U=oT"’ 4)
The total energy of gluon gas in such glueball is
Epert = GTc4r03 (5)

Where I, is the characteristic size of the glueball, and T, is the phase
transition temperature. We assume that the characteristic size of the glueball
coincides with the characteristic size of the nucleus r, ~10™*m=1fm

The calculation of statistical mean value of energy for glueball filled with a

strongly interacting gluon field gives us

1 o _En
(E)oompen =3 —— 2 B8 (6)

nonpert N=0

The phase transition temperature separating perturbative physics from

nonperturbative physics can be estimated as follows
<E>nonpert = Epert : (7)

Unfortunately we can not calculate <E> but since the energy spectrum

nonpert
E,<E <E, <.. (8)
we can take the lower bound of this temperature as follows

(E) >E;=A | 9)

nonpert —

where A is the mass gap. Thus we obtain the lower bound

oT. 1)} > A (10)

C
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Mass gap for glueball

Now we want to show how it is possible to calculate approximately mass gap
for glueball. Shortly the idea is as follows (in details it is possible to familiarize
with calculations in [6-7]). In the scalar model of glueball the Lagrangian of SU(3)

non-Abelian gauge field is approximately represented in the form of Lagrangian of
two scalar fields #,% . One of these fields approximately describes the 2-point
Green function of the gauge field A, € SU(2) = SU(3),a=1,2,3;and another
scalar field, respectively, the 2-point Green function of the gauge field
A7 €SU(3)/SU(2) where SU(3)/SU(2) is a coset. 4-point Green's function is

a bilinear combination of 2-point Green's functions. Similar methods are used for
the description of turbulent fluid flow (see, for example [8]). Thus these scalar
fields describe the quantum fluctuations of the gluon field in the nonperturbative
regime.
The Lagrangian for these fields is as follows
Ol =3 (@, +0,20)- 2" -mif -2 (7 -mif 247wy
where g is the gauge coupling constant of SU(3) gauge field; 4, and m,,
are constants. Corresponding field equations for the spherical symmetric case is
given in Eqg's (14)-(15) where the constant m, is chosen in such a way that at
infinity the energy density would tend to zero. These equations are considered as a
nonlinear eigenvalue problem for eigenfunctions #(r), ¥(r)and eigenvalue m,. In
[6] a spherically symmetric solution describing the ball filled with quantum

fluctuations of the gluon field is obtained. This solution is interpreted as a glueball.

Glueball energy is calculated as
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47zhcm I

Ey = ‘;j 56, )0 =M [5G, ik =TTORE (1)

0 0
Here 5 =¢/m,y=y/m,x=rm, g°=g°Ac are the dimensionless
quantity; the dimension[m,] = m™. The numerical calculation gives the following
estimation E ~107, Expression (12) allows us to estimate the value of the
dimensionless coupling constant g that is required for this model scalar glueball if
we know the glueball mass and its characteristic sizer,. We will take
E, ~1.5-10°MeV (that is an expected value of the glueball) and characteristic

dimensions of glueball of the same order as the size of a proton or neutron, namely

I, =1fm. Then (12) gives us

~> ~ icm;

~1 (13)

gl
That is in the excellent agreement with our statement that we are in the

nonperturbative region.

Now we want to show that E is indeed a mass gap. In the spherical

symmetric case the field equations for scalar fields @, ¥ (that follows from the

Lagrangian (11)) have the form

723 =3l7 + 20 -2 (19)
~ 2~ ~[72 ~2 \
XX =z[¢ +/11(z —1)_. (15)

http://ej.kubagro.ru/2013/06/pdf/71.pdf



Hayunsrii sxxypaan Kyol'AY, Ne90(06), 2013 roxa

Here the prime is the differentiation with respect to x. The analysis in [7]

shows that if we fix the parameters values 4, and My, then the boundary

conditions #(0) and x(0) are defined in a unique way so that the solution is
regular (it means that it should has a finite energy). That is, the equations (14)-(15)

can be considered as a nonlinear eigenvalue problem for the eigenvalues ¢(0),

x(0) and eigenfunctions @(r), ¥(r). It means that our calculated value of the

energy E, isthe massgap A~E.

The lower bound of the phase transition temperature

We now turn to the inequality (10). After the substitution of the values of all
variables and taking r, =1fm and A ~ E, we obtain the following lower bound for

the transition temperature

A 1/4
T, >| =5 | =4-10°K
Ly

At the LHC experiments is succeeded the temperature of10™ +10"K .
Comparing this experimental value with the value calculated in (16) shows that in

calculating the average energy of (6) in the nonperturbative regime should either
consider the energy E,with n>2or the expression (7) to estimate the phase

transition temperature is too rough.

Conclusions

Thus, we have qualitatively investigated how there is a phase transition in a
gluon plasma due the temperature change. At low temperatures the partition
function is the sum over the discrete energy states. These states are correlated
quantum states describing a nonperturbatively quantized SU(3) non-Abelian gauge

field. At high temperatures the partition function is determined by the gas of
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interacting gluons. The phase transition for SU(3) non-Abelian gauge field means
that there is a transition from the description of quantum gluon field on the
language of nonperturbative correlated quantum states to the description of this
quantum field on the language of perturbative interacting gluons. Such phase
transition is similar to the transition from a liquid to a gas. It is crucial that in the
nonperturbative case the correlated quantum states are not a set of quanta. For the
calculations we have considered a glueball that is in a thermal equilibrium with the
thermostat. The lower bound of the phase transition temperature has been
performed by comparing the average energy glueball (which is in thermal

equilibrium with the thermostat) calculated in the perturbative and nonperturbative

A

1/4
regimes: T.2 (?j ~4-10"K The actual value of this temperature is above
0

this lower bound approximately in two orders of magnitude. For a more accurate
estimation of the phase transition temperature it is necessary: (a) to do a
nonperturbative calculations of the next values of energy of correlated quantum
states; (b) take into account the interaction between gluons. It is shown that this
lower bound with the mass gap is connected.

We have considered a scalar model of glueball in which quantum
fluctuations of SU(3) gauge field are considered in a nonperturbative way and are
described by two scalar fields. The corresponding equations for these two scalar
fields are considered as a nonlinear eigenvalue problem. The eigenvalues are the
boundary conditions #(0), ¥(0)for these fields and the eigenfunctions are

@(r), x(r). It means that the regular solutions do not exist for other values of

#(0), x(0). Physically, the regular solution (solution with finite energy) describes

the distribution of quantum fluctuations of the gluon field. The energy of such

distribution of the quantum fluctuations of gluon field is a mass gap since the
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solutions with other boundary conditions does not exist. The resulting expression

for the glueball energy is compared with conventional energy value of glueball
E, ~1.5-10°MeV . The comparison shows that the agreement is reached in the

case that the coupling constant g is in a nonperturbative regime g ~1. That is in

excellent agreement with our statement that we are working in the nonperturbative

region.
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