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В работе рассмотрен фазовый переход для SU(3) 

калибровочного поля (без кварков). Показано, что 

фазовый переход происходит из-за того, что при 

высоких температурах статсумма вычисляется  как 

для газа глюонов, тогда как при низкой температуре 

как сумма по уровням энергии коррелированных 

квантовых состояний SU (3) калибровочного поля. 

.Коррелированные квантовые состояния для сильно 

взаимодействующих полей определяются как 

непертурбативные  квантовые состояния сильно 

взаимодействующих полей. Энергетический спектр 

этих квантовых состояний является дискретным. 

Дана оценка нижней границы температуры фазового 

перехода путем сравнения средней энергии для 

пертурбативного и непертурбативного  режимов (для 

глюбола находящегося в тепловом равновесии с 

термостатом). Показано, что эта величина связана с 

энергией низшего энергетического состояния. Эта 

энергия вычислена в скалярной модели глюбола. 

Если мы установим массу глюбола ~ 1.5·10³MeV , то 

оказывается, что соответствующее значение 

константы связи лежит в непертурбативной области. 

 

The phase transition for US(3) gauge field (without 

quarks) is considered. It is shown that the phase 

transition is due to the fact that at high temperatures the 

partition function should be calculated as for a gas of  

gluons, whereas at low temperatures as the sum over 

energy levels of correlated quantum states of SU(3) 

gauge field. A correlated quantum state for strongly 

interacting fields is defined as a nonperturbative 

quantum state of strongly interacting fields. The energy 

spectrum of these quantum states are discrete one. A 

lower bound of the phase transition temperature by 

comparing of the average energy for the perturbative and 

nonperturbative regimes is estimated (for glueball being 

in thermal equilibrium with the thermostat). It is shown 

that this quantity is associated with a mass gap. In a 

scalar model of glueball its energy is calculated. It is 

shown that this energy is the mass gap. If we set the 

glueball mass ~ 1.5·10³MeV then it is found that the 

corresponding value of coupling constant lies in the 

nonperturbative region. 

 

Ключевые слова: фазовый переход, глюбол  Keywords: phase transition, nonperturbative 

quantization, glueball, mass gap. 

 

Introduction  

One of the most interesting predictions of QCD is a phase transition at some 

critical temperature to a new phase of strongly interacting fields: the quark-gluon 

plasma. The quark-gluon plasma is a state of strongly interacting matter (with the 

quarks and gluons) where they are not longer confined to color neutral entities of 

hadronic size. The quark-gluon plasma is a state of matter at temperatures above 

the phase transition temperature and this state is characterized by a weak coupling 

constant 1q . At the temperatures below the phase transition temperature we have 

strong coupling constant 1g  and we should use nonperturbative technique to 
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describe quantum fields in this region. The various methods can be employed to 

describe the thermodynamics of the high temperature quark-gluon plasma (for 

review, see [1-4] and references therein). 

Currently one of the biggest problems (in our opinion it is a challenge) in 

quantum field theory is the problem of a nonperturbative quantization. The problem 

is that for strongly interacting fields we cannot apply quantization recipes designed 

for weakly interacting fields. From a mathematical point of view it means that in 

this case the Feynman diagram technique cannot be applied. From a physical point 

of view it means that quantum strongly interacting fields cannot be presented as a 

cloud of interacting quanta. Rather such field can be compared with a turbulent 

fluid flow. In this flow there is a statistically fluctuating field of velocities. The 

velocities in the two sufficiently close points are correlated with each other. It was 

exactly what we have for strongly interacting quantum fields: the value of the 

quantum field in the two close enough spacelike points are correlated with each 

other. It means that the correlation function of these fields (2-point Green's 

function) in two sufficiently close spacelike points is nonzero. It has been noted by 

W. Heisenberg [5]. Evidently only one difference between quantum fields and 

turbulent fluid is that in the quantum case corresponding quantum states will be 

quantized. As it should be in quantum theory. 

The quantum states describing the distribution of strongly interacting 

quantum fields will be called as quantum correlated states of strongly interacting 

fields. Briefly, quantum correlated states. For simplicity, in the future we will 

consider only the SU(3) non-Abelian gauge field without quarks. 

The main goal of our research is a qualitative explanation of the phase 

transition for gluon field as a transition from the statistics of a gas of 

nonperturbative interacting gluons to the statistics nonperturbative correlated 

quantum states of strongly interacting SU(3) gauge field. 
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Qualitative evaluation of the phase transition temperature 

Thus we assume that in the strong coupling regime, i.e. when the coupling 

constant 1g , the quantum SU(3) gauge field forms a kind of correlated 

distribution of the fluctuating field in space. Such distributions form a discrete 

spectrum. The discreteness means that the energy spectrum of such distributions is 

discrete one. Note the following features of this point of view: the energy density of 

such distribution of quantum field has to tend fast enough to zero at infinity that the 

energy of the field in whole space would be finite. It means that such fields are 

finite in space. For example, it may be a glueball. In this case above mentioned 

discrete spectrum of energy means that there is a mass spectrum of the glueball. 

The lowest energy will be called a mass gap. 

If bring the glueball in thermal contact with the thermostat then the glueball 

can be considered as a statistical system described by a certain temperature and the 

fluctuating energy. 

As it is known the problem of phase transition in the gluon plasma is that the 

behavior of the plasma for small and large temperatures is essentially different. 

General expectation is that this difference is due to the fact that at low temperatures 

the quantum description of the gluon field should be carried out by a non-

perturbative way while at high temperatures the description of quantum gluon field 

should be carried out by the perturbative way. 

For statistical calculations at high temperatures we will apply the statistics of 

gas of interacting gluons. In the limit 0g  we have the partition function 


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                                                          (1) 

Where  is the energy of noninteracting gluons. After that by the standard 

way we obtain the Planck's formula for energy density (as for photons) 
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At small temperature the statistical sum looks as follows 
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Here nE  is the energy of n-th quantum correlated state; 0E  is a mass 

gap. The calculation of nE  is a problem of nonperturbative quantization of strongly 

nonlinear fields (in our case it is SU(3) non-Abelian gauge field). This problem is 

extremely difficult. Below we will give an approximate calculation of the bound 

state of glueball using a scalar approximation for 2nd and 4th  Green's  functions. 

Thus at low temperatures we should use the expression (3) but for high 

temperatures the expression (1). The phenomenon of phase transition is that at 

some temperature the mean values of energy corresponding to statistical sums (1)  

and (3) are of the same order of magnitude. It means that there is a transition from 

the description of a quantum field on nonperturbative language to the description of 

a quantum field on perturbative language. It is essentially important to note that nE  

cannot be calculated using Feynman diagram technique. 

Let us consider glueball being in thermal equilibrium with the thermostat. To 

describe the phenomenon of phase transition in this thermodynamic system we will 

consider two limiting cases. In the 1st case we have the glueball filled with weakly 

interacting gluons (perturbative case). The situation in this case is completely 

similar to statistics of the photons filling a certain box. With one exception: 

photons do not interact with each other. In the 2nd case the glueball can be in one 

of nE  energy levels. The probability to be in one of nE is defined by standard 

methods of statistical mechanics. 
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The calculation of the mean value of energy density for weakly interacting 

gluon gas in the limit when the coupling constant 0g  could be made on the 

usual way (i.e. perturbative way) and gives us the standard formula for the total 

density of the Planck energy 

4TU                                                               (4) 

The total energy of gluon gas in such glueball is 

3

0

4
rTE cpert                                                               (5) 

Where 0r  is the characteristic size of the glueball, and cT  is the phase 

transition temperature. We assume that the characteristic size of the glueball 

coincides with the characteristic size of the nucleus fmmr 110 15

0  
. 

The calculation of statistical mean value of energy for glueball filled with a 

strongly interacting gluon field gives us 
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The phase transition temperature separating perturbative physics from 

nonperturbative physics can be estimated as follows 

pertnonpert
EE          .                                                  (7) 

Unfortunately we can not calculate
nonpert

E but since the energy spectrum 

...210  EEE                                                           (8) 

we can take the lower bound of this temperature as follows 

 0EE
nonpert

        .                                                  (9) 

where   is the mass gap. Thus we obtain the lower bound 


3

0

4
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Mass gap for glueball 

Now we want to show how it is possible to calculate approximately mass gap 

for glueball. Shortly the idea is as follows (in details it is possible to familiarize 

with calculations in [6-7]). In the scalar model of glueball the  Lagrangian of SU(3) 

non-Abelian gauge field is approximately represented in the form of  Lagrangian of 

two scalar fields , . One of these fields approximately describes the 2-point 

Green function of the gauge field ;3,2,1),3()2(  aSUSUAa

 and another 

scalar field, respectively, the 2-point Green function of the gauge field 

)2(/)3( SUSUAm   where )2(/)3( SUSU  is a coset. 4-point Green's function is 

a bilinear combination of 2-point Green's functions. Similar methods are used for 

the description of turbulent fluid flow (see, for example [8]). Thus these scalar 

fields describe the quantum fluctuations of the gluon field in the nonperturbative 

regime. 

The Lagrangian for these fields is as follows 

      22322

1

2122
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   mmgLeff        (11) 

 where g is the gauge coupling constant of SU(3) gauge field; i  and  2,1m  

are constants. Corresponding field equations for the spherical symmetric case is 

given in Eq's (14)-(15) where the constant 2m  is chosen in such a way that at 

infinity the energy density would tend to zero. These equations are considered as a 

nonlinear eigenvalue problem for eigenfunctions )(),( rr  and eigenvalue 2m . In 

[6] a spherically symmetric solution describing the ball filled with quantum 

fluctuations of the gluon field is obtained. This solution is interpreted as a glueball. 

Glueball energy is calculated as 
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Here cggrmxmm 22

111
~,,/~,/

~
    are the dimensionless 

quantity; the dimension
1

1][ mm . The numerical calculation gives the following 

estimation 
110

~ E . Expression (12) allows us to estimate the value of the 

dimensionless coupling constant g~  that is required for this model scalar glueball if 

we know the glueball mass and its characteristic size 0r . We will take 

MeVEgl

3105.1  (that is an expected value of the glueball) and characteristic 

dimensions of glueball of the same order as the size of a proton or neutron, namely 

fmr 10  . Then (12) gives us 

1
~

4~ 12 
glE

cm
Eg


                                                  (13) 

That is in the excellent agreement with our statement that we are in the 

nonperturbative region. 

Now we want to show that glE is indeed a mass gap. In the spherical 

symmetric case the field equations for scalar fields ,  (that follows from the 

Lagrangian (11)) have the form 

  2
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2
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2 ~~~~~2~
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  ,                                            (14) 
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Here the prime is the differentiation with respect to x. The analysis in [7] 

shows that if we fix the parameters values i  and  2,1m  then the boundary 

conditions )0(  and  )0(  are defined in a unique way so that the solution is 

regular (it means that it should has a finite energy). That is, the equations (14)-(15) 

can be considered as a nonlinear eigenvalue problem for the eigenvalues )0( ,  

)0(  and eigenfunctions )(),( rr  . It means that our calculated value of the 

energy glE  is the mass gap glE . 

 

The lower bound of the phase transition temperature 

We now turn to the inequality (10). After the substitution of the values of all 

variables and taking fmr 10   and glE we obtain the following lower bound for 

the transition temperature 

K
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At the LHC experiments is succeeded the temperature of K1312 1010  . 

Comparing this experimental value with the value calculated in (16) shows that in 

calculating the average energy of (6) in the nonperturbative regime should either 

consider the energy nE with 2n or the expression (7) to estimate the phase 

transition temperature is too rough. 

Conclusions 

Thus, we have qualitatively investigated how there is a phase transition in a 

gluon plasma due the temperature change. At low temperatures the partition 

function is the sum over the discrete energy states. These states are correlated 

quantum states describing a nonperturbatively quantized SU(3) non-Abelian gauge 

field. At high temperatures the partition function is determined by the gas of 
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interacting gluons. The phase transition for SU(3) non-Abelian gauge field means 

that there is a transition from the description of quantum gluon field on the 

language of nonperturbative correlated quantum states to the description of this 

quantum field on the language of perturbative interacting gluons. Such phase 

transition is similar to the transition from a liquid to a gas. It is crucial that in the 

nonperturbative case the correlated quantum states are not a set of quanta. For the 

calculations we have considered a glueball that is in a thermal equilibrium with the 

thermostat. The lower bound of the phase transition temperature has been 

performed by comparing the average energy glueball (which is in thermal 

equilibrium with the thermostat)  calculated in the perturbative and nonperturbative 

regimes: K
r

Tc

10
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104 











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


. The actual value of this temperature is above 

this lower bound approximately in two orders of magnitude. For a more accurate 

estimation of the phase transition temperature it is necessary: (a) to do a 

nonperturbative calculations of the next values of energy of correlated quantum 

states; (b) take into account the interaction between gluons.  It is shown that this 

lower bound with the mass gap is connected. 

We have considered a scalar model of glueball in which quantum 

fluctuations of SU(3)  gauge field are considered in a nonperturbative way and are 

described by two scalar fields. The corresponding equations for these two scalar 

fields are considered as a nonlinear eigenvalue problem. The eigenvalues are the 

boundary conditions )0( , )0( for these fields and the eigenfunctions are 

)(),( rr  . It means that the regular solutions do not exist for other values of 

)0( , )0( . Physically, the  regular solution (solution with finite energy) describes 

the distribution of quantum fluctuations of the gluon field. The energy of such 

distribution of the quantum fluctuations of gluon field is a mass gap since the 



Научный журнал КубГАУ, №90(06), 2013 года 

http://ej.kubagro.ru/2013/06/pdf/71.pdf 

solutions with other boundary conditions does not exist. The resulting expression 

for the glueball energy is compared with conventional energy value of glueball 

MeVEgl

3105.1  . The comparison shows that the agreement is reached in the 

case that the coupling constant g~  is in a nonperturbative regime 1~ g . That is in 

excellent agreement with our statement that we are working in the nonperturbative 

region. 
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