УДК 631.674.6:634.11

UDC 631.674.6:634.11

УСОВЕРШЕНСТВОВАНИЕ РЕЖИМА ВОДО-ОБЕСПЕЧЕНИЯ ПЛОДОВЫХ РАСТЕНИЙ

IMPROVEMENT OF WATER SUPPLY OF FRUIT PLANTS

Гегечкори Борис Сергеевич д.с.-х.н., профессор

Gegechkori Boris Sergeevich Dr.Sci.Agr., professor

Орленко Сергей Юрьевич к.т.н., доцент

Orlenko Sergey Yurievich associate professor

Рудь Михаил Юрьевич

Rud Mikhail Yurievich

к.с.-х.н., ассистент

Cand.Agr.Sci., assistant

Овчарова Анна Павловна

магистрант

Ovtcharova Anna Pavlovna graduate student

Антонова Елена Юрьевна

Antonova Elena Yurievna

магистрант

graduate student

Кубанский государственный аграрный универси-

Kuban State Agrarian University, Krasnodar, Russia

тет, Краснодар, Россия

Установлено, что в условиях вегетационного опыта наиболее эффективным способом водообеспечения однолетних саженцев яблони оказалось применение гранул суперабсорбента «АкваЛайф»

It is established that in a vegetative experience the most effective way to water supply was application of AquaLife supersorbent granules

Ключевые слова: ВОДОУДЕРЖВАЮЩАЯ СПОСОБНОСТЬ, СУПЕРАБСОРБЕНТЫ, ВЛАГА, САЖЕНЦЫ ЯБЛОНИ, ВОДНЫЙ ПОТЕНЦИАЛ, ТРАНСПИРАЦИЯ, СУБСТРАТ

Keywords: WATER ABSORBING ABILITY, SU-PERSORBENTS, MOISTURE, APPLE-TREE SEEDLINGS, WATER POTENTIAL, TRANSPIRA-TION, SUBSTRATUM

Как показывают статистические показатели [10], Краснодарский край является основным производителем фруктов в Южном и Северо-Кавказском федеральных округах. По степени влагообеспеченности из четырех плодовых зон две (Степная, Прикубанская) относятся к зонам недостаточного увлажнения. Поэтому для получения регулярных урожаев плодов высокого качества необходимо внедрение эффективных способов искусственного орошения, позволяющих обеспечивать оптимальную влажность почвенного слоя в течение всего вегетационного периода плодовых растений. Внедрение современных способов орошения плодовых садов предполагает проведение научно обоснованного комплекса мероприятий – внесение оптимальных доз минеральных удобрений, поддержание оптимальных поливных режимов при минимальных затратах оросительной воды. Своевременное и качественное проведение вышеназванных мероприятий позволяет наиболее эффективно использовать трудовые, энергетические и материально-финансовые ресурсы. Кроме того, ограниченность водных ресурсов в большинстве районов произрастания плодовых растений, требующих постоянного орошения, заставляет искать дополнительные водоисточники или внедрять альтернативные технологии.

Интенсификация сельскохозяйственного производства, актуальность проблемы охраны окружающей среды в связи с ростом дефицита воды как по количественным, так и по качественным показателям подтверждают необходимость проведения исследований по разработке научнометодических основ обеспечения водой плодовых растений с использованием нетрадиционных и ресурсосберегающих технологий.

Основными причинами низкой степени приживаемости саженцев древесных плодовых растений, их неравномерного роста и развития являются недостаточная научная обоснованность режимов орошения, а также применение несовершенных малопроизводительных и трудоёмких способов полива. Вышеназванные недостатки особенно заметно проявляются в сильно засушливые годы, какими были 2011 и 2012 годы.

Вместе с тем потребность плодовых растений в воде в течение вегетационного периода, а также величина нижнего предела оптимальной влажности почвы изменяются в зависимости от фенофаз развития, особенностей почвенно-гидрологических и климатических условий местности, уровня агротехнических работ.

Целью наших исследований является

- установление эффективности различных альтернативных способов влагообеспечения плодовых растений и научное обоснование среди них оптимальных и экономически целесообразных, обеспечивающих хороший рост и развитие однолетних саженцев яблони в условиях вегетационного опыта;
- изучение влияния суперабсорбентов на водоудерживающую способность плодовых растений и их рост при различных условиях полива.

Задачи исследований:

- учет и наблюдение за биометрическими показателями опытных плодовых растений в зависимости от используемых приемов регулирования водного режима;
- определение уровня почвенной влаги и водоудерживающей способности плодовых растений с учетом приемов регулирования водного режима.

Исследования проводили в 2011—2012 гг. на вегетационных площадках Ботанического сада Кубанского государственного аграрного университета.

Схема вегетационных опытов

Опыт 1. Изучение влияния суперабсорбента MaxiMarin на рост плодовых растений:

- 1. Полив по мере необходимости (К)
- 2. Без полива с открытой поверхностью (К)
- 3. Внесение гранул Махі Магіп под корни– 2 шт.
- 4. Внесение гранул Maxi Marin под корни 4 шт.
- 5. Внесение гранул Maxi Marin под корни 6 шт.

Опыт 2. Изучение влияния гранул «АкваЛайф» на рост плодовых растений:

- 1. Полив по мере необходимости (К)
- 2. Без полива с открытой поверхностью (К)
- 3. Внесение гранул «АкваЛайф» под корни 5 г
- 4. Внесение гранул «АкваЛайф» под корни 10 г
- 5. Внесение гранул «АкваЛайф» под корни 15 г

В варианте, состоящем из трёх повторностей, в вегетационных сосудах на дне делали по три отверстия диаметром 15 мм; на крышках вырезали место для размещения саженцев. В вариантах 1, 3, 4, 5 крышки сосудов с однолетними саженцами закрывали, в варианте 2 – сосуды оставляли открытыми (рис. 1).

Приготовление субстрата (10 кг) для выращивания плодовых саженцев в вегетационных сосудах: 4 кг пахотной почвы + 3 кг песка + 2 кг торфа + 1 кг перепревшего навоза + 30 г нитроаммофоски. Субстрат из указанного состава заготавливали в ботаническом саду Кубанского государственного аграрного университета.

На дно сосуда засыпали слой керамзита – 4–5 см, затем до половины – субстрат и высаживали саженцы таким образом, чтобы место прививки было выше поверхности сосуда на 5 см. По вариантам и схемам опыта размещали гранулы MaxiMarin и «АкваЛайф», и сосуды полностью засыпали субстратом.

Рисунок 1. Опыты в вегетационных сосудах на 14.04.2012

Субстрат поливали равным объемом воды -3 л. Саженцы перед посадкой обрезали, корни обмывали и взвешивали. После посадки саженцев в вегетационные сосуды измеряли толщину штамба (рис. 2).

Рисунок 2. Опыты в вегетационных сосудах в октябре 2012 г.

Контроль расхода влаги по вариантам опыта осуществляли путем трехкратного (в месяц) взвешивания сосудов в течение вегетационного периода (май – октябрь). Учеты суммарного водопотребления саженцев, в

зависимости от поставленных задач, осуществляли по календарным срокам (первого, пятнадцатого и тридцатого числа каждого месяца).

Суммарное водопотребление плодовых саженцев рассчитывали так называемым балансовым методом с некоторыми дополнениями для вегетационных опытов, исключая объем поступивших осадков (P_0) в вариантах 2—4 и воду, используемую при капиллярном подпитывании почвы грунтовыми водами (Γ) во всех вариантах.

Суммарное водопотребление рассчитывали по формуле:

$$E = P_0 + M + (W_H - W_K) + \Gamma - \Phi,$$

где E – суммарное водопотребление за расчетный период, M^3 /га; W_H и W_K – начальные и конечные запасы влаги в расчетном слое почвы, M^3 /га; P_0 – осадки за период, M^3 ; M – вода, поступившая при поливах, M^3 /га; Γ – вода, используемая при капиллярном подпитывании почвы грунтовыми водами, M^3 /га; Φ – количество воды, просочившейся за пределы расчетного слоя почвы, M^3 /га.

В проведенных нами опытах площадь верхней части каждого сосуда составляла 452,16 см², объем сосуда — 13564,8 см³. При этом отдельные элементы водного баланса, например, незначительную фильтрацию воды за пределы расчетного объема, в нашем случае не учитывали, не учитывали также поступление воды, благодаря выпавшим осадкам (так как вегетационные сосуды закрывали крышкой и полиэтиленовой пленкой для исключения испарения).

С учетом дополнительного объема воды, поступающего к растениям за счет грунтовых вод, расчетная формула суммарного водопотребления будет иметь следующий окончательный вид:

- для контрольного варианта

$$E = P_0 + M + (W_H - W_K)$$
;

- для остальных вариантов

http://ej.kubagro.ru/2013/06/pdf/44.pdf

$$E=M+(W_H-W_K)$$
.

Все остальные учеты и наблюдения водообеспечения и водопотребления саженцев плодовых растений проводили по общепринятым методикам [4,5].

Результаты и обсуждения

Проведенные исследования показали, что суммарное водопотребление однолетних саженцев плодового растения в зависимости от способа водообеспечения в 2011 г. в среднем составило от 14846 до 27003 мл/см³, в 2012 г. – от 15065 до 27498 мл/см³ – в первом опыте с применением таблеток MaxiMarin. При использовании гранул «АкваЛайф» суммарное водопотребление плодового растения достигало 14314–27405 мл/см³ в 2011 г. и 15585–27550 мл/см³ в 2012 г. (табл. 1, 2).

Таблица 1 – Расчет суммарного водопотребления однолетних саженцев плодового растения в вегетационных сосудах с применением MaxiMarin, мл/см³

плодового растения в вегетационных сосудах с применением махімагіп, мл/см										
Годы исследова- ний	Вариан- ты опыта	Запас влаги к началу вегета- ции W _н	Приход влаги			Запас	Суммарное			
			Осад- ки Р ₀	По- лив М	Bcero	влаги к концу вегета- ции	водопотреб- ление за 10.04 – 31.10, мл/см ³			
2011	1	3110	4163	20240	24403	2600	27003			
	2	3110		19810	19810	2690	22500			
	3	3110		12940	12940	2760	15700			
	4	3110		12105	12105	2810	14915			
	5	3110		11840	11840	3006	14845			
2012	1	3110	2731	20159	24890	2608	27498			
	2	3110		19759	19759	2790	22549			
	3	3110		12988	12988	2865	15853			
	4	3110		12330	12330	2987	15317			
	5	3110		11960	11960	3105	15065			

Как видно из данных таблиц 1, 2, независимо от способа водообеспечения в 2012 г. показатели суммарного водопотребления однолетних плодовых саженцев были гораздо выше. Это связано с высокими температурными показателями в летнее время и почти в 1,8 раза уменьшением коли-

чества выпавших осадков в условиях Ботанического сада Кубанского государственного аграрного университета (2731 мл), по сравнению с 2011 г. (4163 мл).

Таблица 2 – Расчет суммарного водопотребления однолетних саженцев плодового растения в вегетационных сосудах с применением АкваЛайф, мл/см³

Годы иссле- дований	Варианты опыта	Запас влаги к началу вегета- ции W _н	Приход влаги			Запас	Суммарное водопотреб-
			Осад- ки Р ₀	По- лив М	Всего	влаги к концу вегета- ции	ление за 10.04— 31.10, мл/см ³
2011	1	3110	4163	20602	24765	2640	27405
	2	3110		19974	19974	2735	22709
	3	3110		12710	12710	2880	15590
	4	3110		11440	11440	2910	14350
	5	3110		11214	11214	3100	14314
2012	1	3110	2731	21439	24970	2580	27550
	2	3110		19839	19839	2802	22641
	3	3110		15002	15002	2810	16050
	4	3110		14118	14118	2930	15466
	5	3110		13605	13605	2980	15585

В ходе проведенных опытов установлено, что применение суперабсорбентов в виде гранул МахіМагіп и «АкваЛайф» способствовало сохранению влаги в вегетационных сосудах. Так, в 2011 г. в первом опыте применение 4—6 гранул значительно снизило расход поливной воды. Например, в 2011 г. в контроле N:1, с открытой поверхностью вегетационных сосудов суммарное водопотребление саженцев плодовых растений составило 27003 мл/см³, во втором контроле с закрытой поверхностью сосудов — 22500 мл/см³, а в варианте 4 (4 гранулы) — 14915 мл/см³, в варианте 5 (6 гранул) — 14846 мл/см³. При использовании гранул «АкваЛайф» в 2011 г. в контрольных вариантах вышеприведенная закономерность сохранялась — суммарное водопотребление составило от 22709 до 27405 мл/см³, а в вариантах 4 и 5 — от 14314 до 14350 мл/см³, или на 45—52 % меньше, по сравнению с контролями. В более засушливый 2012 г. увеличение расхода воды в

основном было связано с большим расходом поливной воды. Таким образом, как гранулы MaxiMarin и «АкваЛайф» в начале проведения опыта способствовали накоплению воды, а затем — по мере необходимости она расходовалась однолетними саженцами яблони.

Список литературы

- 1. Водяницкий В.И. Режимы капельного орошения яблоневых садов / И.В. Водяницкий и др. // Садоводство и виноградарство. 2002. N $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ $\!\!\!$ С. 4–6.
- 2. Воды России (состояние, использование, охрана). 1986–1990 гг. Свердловск: Урал НИИВХ, 1991. 148 с.
- 3. Воды России (состояние, использование, охрана). 1991–1997 гг. Екатеринбург: РосНИИВХ, 1992. – 1998.
- 4. Дубенок Н.Н. и др. Интенсивные технологии при возделывании сельскохозяйственных культур / Н.Н. Дубенок и др. М.: ТСХА, 1988. С. 15–35.
- 5. Использование и охрана водных ресурсов в СССР (Анализ данных государственного учёта использования вод). Выпуски 1–11. Минск: ЦНИИКИВР, 1981. 89.
- 6. Капельное орошение (Пособие к СНиП 2.06.03 85 «Мелиоративные системы и сооружения»). М.: Союзводпроект, 1986. 150 с.
- 7. Основные показатели использования вод в СССР за $1980–89\ rr.-M.$: Минводхоз СССР, 1981.-90.
- 8. Плугарь М., Бейкал М., Бейкал 3. Капельное орошение и урожайность плодовых культур // Сельское хозяйство Молдавии. 1981. № 5. С. 38-39.
- 9. Погодаев А.Е., Исмайылов Г.Х., Демен А.П. Водопотребление и водоотведение в агропромышленном комплексе России // Современные проблемы мелиорации и пути их решения: Сб. науч. тр. ВНИИГиМ. М.: ВНИИГиМ, 1999. Т. 2. С. 154–174.
- 10. Сельское хозяйство Краснодарского края: Статистический сборник. Краснодар, 2012.-238 с.

References

- 1. Vodjanickij V.I. Rezhimy kapel'nogo oroshenija jablonevyh sadov / I.V. Vodjanickij i dr. // Sadovodstvo i vinogradarstvo. 2002. N0 6 S. 4–6.
- 2. Vody Rossii (sostojanie, ispol'zovanie, ohrana). 1986–1990 gg. Sverd-lovsk: Ural NIIVH, 1991. 148 s.
- 3. Vody Rossii (sostojanie, ispol'zovanie, ohrana). 1991–1997 gg. Ekaterin-burg: RosNIIVH, 1992. 1998.
- 4. Dubenok N.N. i dr. Intensivnye tehnologii pri vozdelyvanii sel'skoho-zjajstvennyh kul'tur / N.N. Dubenok i dr. M.: TSHA, 1988. S. 15–35.
- 5. Ispol'zovanie i ohrana vodnyh resursov v SSSR (Analiz dannyh gosudarstvennogo uchjota ispol'zovanija vod). Vypuski 1–11. Minsk: CNIIKIVR, 1981. 89.
- 6. Kapel'noe oroshenie (Posobie k SNiP 2.06.03 85 «Meliorativnye siste-my i sooruzhenija»). M.: Sojuzvodproekt, 1986. 150 s.
- 7. Osnovnye pokazateli ispol'zovanija vod v SSSR za 1980–89 gg. M.: Min-vodhoz SSSR, 1981. 90.
- 8. Plugar' M., Bejkal M., Bejkal Z. Kapel'noe oroshenie i urozhajnost' plo-dovyh kul'tur // Sel'skoe hozjajstvo Moldavii. 1981. № 5. S. 38–39.

- 9. Pogodaev A.E., Ismajylov G.H., Demen A.P. Vodopotreblenie i vodootvede-nie v agropromyshlennom komplekse Rossii // Sovremennye problemy melioracii i puti ih reshenija: Sb. nauch. tr. VNIIGiM. M.: VNIIGiM, 1999. T. 2. S. 154–174.
- $10.\,$ Sel'skoe hozjajstvo Krasnodarskogo kraja: Statisticheskij sbornik. Kras-nodar, $2012.-238~\mathrm{s}.$