УДК 061.66

ЭФФЕКТИВНОСТЬ РАННИХ СРОКОВ УБОРКИ САХАРНОЙ СВЕКЛЫ В ЮЖНОЙ ЗОНЕ РОСТОВСКОЙ ОБЛАСТИ

Фетюхин Игорь Викторович д.с.-х.н., профессор

Филенко Геннадий Александрович аспирант Донской государственный аграрный университет, п. Персиановский, Россия

В статье приведены результаты влияния различных типов гибридов на продуктивность сахарной свеклы в зависимости от сроков уборки, а также дана их экономическая оценка

Ключевые слова: ТИПЫ ГИБРИДОВ, САХАРНАЯ СВЕКЛА, СРОКИ УБОРКИ, САХАРИСТОСТЬ, СБОР САХАРА UDC 0.61.66

EFFICIENCY OF EARLY TERMS OF CLEANING OF THE SUGAR BEET IN THE SOUTHERN ZONE OF THE ROSTOV AREA

Fetjuhin Igor Viktorovich Dr.Sci.Agr., professor

Filenko Gennady Aleksandrovich post-graduate student Don state agrarian University, the item Persianovsky, Russia

In article results of influence of various types of hybrids on efficiency of a sugar beet depending on cleaning terms are resulted, and also their economic estimation is given

Keywords: TYPES OF HYBRIDS, SUGAR BEET, CLEANING TERMS, SUGAR CONTENT, SUGAR GATHERING

Значительным резервом в повышении продуктивности сахарной свеклы является применение инновационных технологий, которые объединяют химизацию свекловодства, новейшие достижения селекции, подбор различных типов гибридов и приемов их подготовки для определения оптимальных сроков уборки и т.д. [Пыркин В.И., Кисель О.А., Гизбуллина Л.Н., Москаленко В.П. др., 2007].

Современные гибриды сахарной свеклы подразделяются на три основных типа: Е – урожайный, дающий высокий сбор сахара за счет высокого урожая корнеплодов, N – нормальный, сочетающий урожайность и сахаристость корнеплодов и Z – сахаристый, обеспечивающий высокий сбор сахара за счет высокого содержания его в корнеплодах. Также существуют промежуточные типы: NE – нормально-урожайный, NZ – нормально-сахаристый И ZZ_ максимально сахаристый. Такое разнообразие типов сахарной свеклы позволяет хозяйствам рационально сформировать уборочный конвейер по биологическим срокам созревания корнеплодов и оптимизировать равномерную загрузку сахарных заводов на период переработки [Шпаар Д., Дрегер Д., Захаренко А.А. и др., 2006].

Одним из решающих факторов получения максимального урожая корнеплодов сахарной свеклы и организации логистики уборки культуры в зоне Северного Кавказа является подбор типов гибридов различного направления. Своевременная и качественная уборка создает предпосылки для наиболее полного использования генетического потенциала сортов и гибридов сахарной свеклы и получения наивысшего сбора сахара.

Условия и методы. Исследования по изучению продуктивности различных типов гибридов сахарной свеклы в зависимости от сроков уборки проводились в 2008-2010 году в южной зоне Ростовской области. Повторность в опытах трехкратная. Размещение делянок последовательное.

Цель исследований – определить оптимальные сроки ранней уборки различных типов гибридов сахарной свеклы и вариантов их подготовки в почвенно-климатических условиях южной зоны Ростовской области.

В опыте изучались три типа гибридов: сахаристые типы (Z) - Олесия КВС EPD® и Кармелита, нормально-сахаристый тип (N/Z) - Виолетта, нормальный тип (N) - Победа. Уборка гибридов проводилась в четыре срока: ультраранний срок уборки (8 августа), ранний (18 августа), средний (28 августа) и рекомендуемый (28 сентября).

Подготовка гибрида Олесия КВС проводилась по запатентованной инновационной технологии EPD® (Early Plant Development – ускоренное развитие молодых растений) разработанной немецкой селекционной компанией КВС. Технология основана на модернизации элементов доработки и дражирования семян, она позволяет сократить срок от посева до прорастания семян в полевых условиях, ускоряя процессы ассимиляции уменьшая развитие сорняков И потери влаги OT испарения. Преимущество применения технологии EPD в сравнении с гибридами, подготовленными по стандартной технологии, заключается в следующем: раннее и более равномерное развитие растений, быстрые равномерные полевые всходы, ускоренное развитие листового аппарата, оптимальное

использование фотосинтеза, раннее и быстрое развитие растений, оптимальное накопление ассимилянтов, выровненная конечная густота, минимальные потери свеклы, надежный урожай свеклы и выход сахара [www.kws-rus.com].

Агротехника сахарной свеклы в опыте. Предшественник озимая пшеница по пару. Основная обработка - вспашка 27-30 см. Перед посевом культивация с боронованием. Две обработки гербицидами баковой смесью Бетанал 22 + Зелек Супер. Одна обработка Базудином против свекловичной блошки и листовой тли. Норма высева - 1,1 п.е. (110 тыс. раст./га). Посев проводился в первой декаде апреля. Глубина посева составила 4,0-4,5 см. Уборка проводилась в соответствии со схемой опыта.

Необходимо учесть, что 2009 и 2010 годы исследований отличались крайне неблагоприятными условиями увлажнения, в летние месяцы осадки практически не выпадали. В 2009 году через две недели с момента посева на опытном участке в течение шести дней наблюдались заморозки до -8°C, что привело к уменьшению полевой всхожести у всех гибридов сахарной свеклы. В 2010 году погодные условия были неблагоприятные, вследствие того, что сильная засуха наблюдалась с середины июля по середину сентября.

Результаты исследований. Полевая всхожесть — один из важнейших показателей посевных качеств семян. При посеве сахарной свеклы на конечную густоту стояния этот показатель во многом определяет качество и урожайность корнеплодов. Чем выше полевая всхожесть семян, тем лучше происходит рост и развитие растений сахарной свеклы, это ведет к лучшей равномерности распределения растений в рядке, что важно при точном посеве на конечную густоту одноростковыми семенами [Удобрение сахарной свеклы при интенсивной технологии возделывания, 1991].

Исследования, проведенные в Донском ГАУ, свидетельствуют, что в 2008 и 2010 гг. наибольшая полевая всхожесть и густота стояния через 8 и 11 дней после посева наблюдались у гибрида Олесия КВС $EPD^{\$}$ (табл. 1). Это связано с тем, что подготовка семян у этого гибрида проводилась по технологии $EPD^{\$}$, которая позволяет сократить срок от посева до прорастания семян в полевых условиях, способствуя более раннему и равномерному появлению всходов. На 14-й и 17-й день после посева этот показатель у всех гибридов выровнялся.

Наибольшая густота стояния растений в 2008 году перед смыканием отмечалась у гибрида (Z) типа Олесия КВС EPD® (83,0 тыс. раст./га); наименьшая - у гибрида (N) типа Победа (81,9 тыс. раст./га). У гибридов (Z) типа Кармелита и (N/Z) типа Виолетта этот показатель составлял 82,5 и 82,4 тыс. раст./га соответственно.

В 2009 году наибольшая густота стояния перед смыканием рядков отмечалась у гибрида Кармелита (97,4 тыс. раст./га). Наименьшую густоту стояния растений перед смыканием наблюдали у гибрида сахаристого (Z) типа Олесия КВС в обработке EPD® (71,9 тыс. раст./га), что связано с более ранним прорастанием семян и повреждением их заморозками.

Формирование оптимальной густоты стояния растений с равномерным их размещением в рядке, это важный агротехнический прием, влияющий на урожайность сахарной свеклы и ее технологические качества. Для большинства зон свеклосеяния России оптимальная предуборочная густота стояния растений составляет 90-110 тыс/га. При меньшей густоте снижается не только урожайность, но и сахаристость, а при большей - образуется много мелких корнеплодов, что увеличивает потери урожая при уборке [Ковтун Ю.А.,1990].

Таблица 1 – Влияние различных типов гибридов сахарной свеклы и вариантов их подготовки на полевую всхожесть (%) и густоту стояния (тыс. раст./га)

Гибрид		Пол	Густота				
_		через 8	через 11	± ±		стояния	
		дней	дней после	дней после	дней после	перед	
			посева	посева	посева	смыканием	
		посева				рядков	
-	2008Γ	<u>58,5*</u>	<u>66,1</u>	68,6	74,5	83,0	
Z-тип		64,4	72,7	75,4	81,9		
подготовка	2009г	44,0	<u>55,4</u>	63,3	<u>78,5</u>	71,9	
EPD [®]		28,7	37,8	43,7	51,2		
(Олесия	2010г	<u>52,5</u>	69,8	71,6	79,5	96,2	
KBC)		52,4	61,7	72,9	87,8		
<i>C</i>)	l .	52,0	64,0	<u>68,0</u>	78,0	83,7	
Среднее		49,0	57,0	64,0	73,6		
	2000	<u>9,9</u>	45,8	61,2	74,1	92.5	
	2008г	10,9	50,4	67,4	81,5	82,5	
Z-тип	2000=	12,0	<u>35,0</u>	45,0	<u>59,0</u>	07.4	
(Кармелита)	2009г	15,2	68,1	87,2	95,1	97,4	
, ,	2010г	<u>15,0</u>	49,0	<u>51,0</u>	0 65,0		
	20101	20,5	62,1	76,7	84,6	85,2	
Среднее		<u>12,0</u>	<u>43,0</u>	<u>52,0</u>	<u>66,0</u>	88,0	
Среонее		16,0	60,0	77,0	87,0	88,0	
	2008Γ	<u>11,2</u>	<u>47,5</u>	<u>60,6</u>	<u>73,9</u>	81,9	
		11,8	52,2	66,8	81,3		
N-тип	2009г	<u>12,3</u>	<u>57,0</u>	<u>70,0</u>	<u>85,0</u>	86,9	
(Победа)		15,3	67,0	68,3	75,3		
	2010г	<u>15,6</u>	<u>52,1</u>	<u>61,4</u>	<u>71,3</u>	85,3	
	20101	21,5	61,2	71,6	84,9	05,5	
Среднее		<u>13,0</u>	<u>52,0</u>	<u>64,0</u>	<u>77,0</u>	81,0	
Среопес	ı	16,0	60,0	69,0	81,0	01,0	
N/Z -тип (Виолетта)	2008г	<u>9,6</u>	<u>48,1</u>	<u>61,4</u>	<u>74,0</u>	82,4	
		10,6	52,9	67,6	81,5		
	2009г	10,3			73,0	87,5	
		10,9	63,3	72,4	85,3	07,5	
	2010г	<u>20,6</u>	<u>61,3</u>	<u>71,2</u>	<u>81,3</u>	86,4	
	20101	30,3	57,4	67,5	80,2		
Среднее		14,0	<u>53,0</u>	<u>65,0</u>	<u>76,0</u>	85,4	
		17,0	57,9	69,2	82,3		

*Примечание: в числителе – полевая всхожесть; в знаменателе – густота стояния

Результаты исследований по влиянию различных типов гибридов сахарной свеклы и вариантов их подготовки на густоту стояния перед уборкой представлены в таблице 2.

Таблица 2 - Густота стояния к уборке различных типов гибридов сахарной свеклы и вариантов их подготовки

Типы гибридов и варианты	Густота стояния к уборке, тыс.раст./га				
подготовки	2008 г	2009 г	2010 г	Среднее	
Z-тип (Олесия КВС ЕРО®)	82,3	68,6	95,0	81,9	
Z-тип (Кармелита)	81,2	86,1	83,1	83,4	
N-тип (Победа)	81,4	85,3	84,0	83,6	
N/Z-тип (Виолетта)	81,3	80,3	85,0	82,2	

Наибольшая густота стояния перед уборкой различных типов гибридов сахарной свеклы в 2008 году составила у гибрида сахаристого (Z) типа Олесия КВС EPD^{\otimes} – 82,2 тыс.раст./га. По остальным гибридам существенной разницы по этому показателю не наблюдалось.

В 2009 году в связи с неблагоприятными климатическими условиями (весенние заморозки) данные отличались от результатов предыдущего года. Так наибольшая густота стояния к уборке отмечалась у гибрида сахаристого (Z) типа Кармелита - 86,1 тыс.раст./га и гибрида нормального (N) типа Победа — 85,3 тыс.раст./га; наименьшая у гибрида нормально-сахаристого (N/Z) типа Виолетта — 80,3 тыс.раст./га и гибрида сахаристого (Z) типа Олесия КВС ЕРО® — 68,6 тыс.раст./га.

В 2010 году наибольшая густота отмечалась у гибрида сахаристого (Z) типа Олесия КВС EPD^{\otimes} 95,0 тыс.раст./га. По остальным гибридам густота насаждения колебалась в пределах от 83,1 тыс. раст./га до 85 тыс.раст./га.

Проросшие и молодые растения свеклы часто поражает корнеед или «черная ножка», возбудителем которого являются патогенные грибы. В наибольшей степени заболеванию подвержены молодые, ослабленные под воздействием комплекса неблагоприятных факторов проростки свеклы

Среднее значение повреждением (%) корнеедом у различных типов гибридов и вариантов их подготовки отображены на рисунке 1.

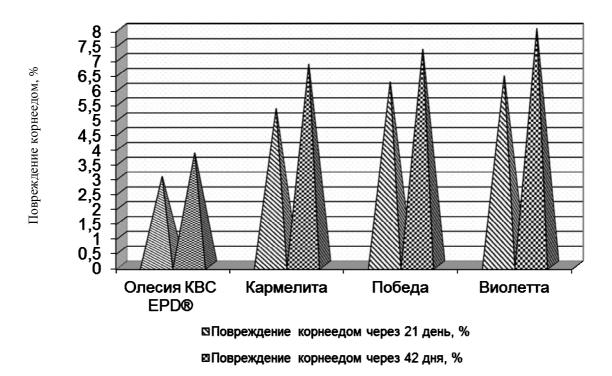


Рис. 1. Среднее значение повреждением корнеедом у различных типов гибридов сахарной свеклы и вариантов их подготовки (2008-2010 гг.)

Наиболее устойчивым к повреждению корнеедом через 21 день после посева за годы исследований (2008-2010 гг.) оказался гибрид Олесия КВС EPD^{\circledast} (3,0%), менее устойчивым гибрид Виолетта (5,3%), Победа (6,2%) и Кармелита (6,4%). Наименьшее повреждение корнеедом через 42 дня после всходов также отмечалось у гибрида Олесия КВС EPD^{\circledast} (3,8%). Это объясняется более ранним появлением всходов у гибрида, обработанного по технологии EPD и их более активным развитием в условиях достаточного количества влаги в верхнем слое почвы.

Урожайность и качество корнеплодов – основные показатели, характеризующие возможности реализации потенциала гибридов сахарной свеклы в определенных почвенно-климатических условиях [Нанаенко А.А. Нанаенко А.К., 2002].

Анализ средних значений урожайности за годы исследований (2008-2010 гг.) свидетельствует (табл. 3), что наибольшая урожайность при

ультрараннем сроке отмечается у гибридов сахаристого (Z) типа Олесия КВС EPD® (32,1 т/га) и Кармелита (27,1 т/га). При раннем и среднем сроке уборки показатели увеличились, по сравнению с ультраранним сроком уборки. Максимальная урожайность при раннем сроке уборке также отмечалась у гибридов сахаристого (Z) типа - Олесия КВС EPD® (37,9 т/га) и Кармелита (33,8 т/га). Аналогичная тенденция прослеживалась и при среднем сроке уборки, где наилучший показатель урожайности наблюдался у гибридов сахаристого (Z) типа Олесия КВС EPD® (40,4 т/га) и гибрида Кармелита (36,5 т/га). В рекомендуемый срок уборки показатели несколько изменились. Наибольшую урожайность показали гибрид сахаристого (Z) типа Олесия КВС EPD® 45,0 т/га и гибрид нормального (N) типа Победа 41,0 т/га.

Таблица 3- Урожайность различных типов гибридов сахарной свеклы и вариантов их подготовки в зависимости от сроков уборки

Типы гибридов	Урожайность, т/га							
_	2008г	2009г	2010г	Среднее				
Ультраранний срок уборки (8 августа)								
Z-тип (Олесия КВС EPD®)	25,4	22,6	48,3	32,1				
Z-тип (Кармелита)	23,1	22,3	35,9	27,1				
N-тип (Победа)	23,2	21,6	30,7	25,2				
N/Z-тип (Виолетта)	23,4	26,5	30,7	26,9				
HCP ₀₅	1,7	2,2						
Ранний срок уборки (18 августа)								
Z-тип (Олесия КВС EPD®)	27,9	27,1	58,6	37,9				
Z-тип (Кармелита)	25,0	30,9	45,4	33,8				
N-тип (Победа)	24,9	29,9	39,2	31,3				
N/Z-тип (Виолетта)	24,3	29,2	35,3	29,6				
HCP ₀₅	2,3	2,1						
	ий срок убор	оки (28 августа						
Z-тип (Олесия КВС EPD®)	29,7	31,5	60,0	40,4				
Z-тип (Кармелита)	28,2	33,4	47,9	36,5				
N-тип (Победа)	29,5	32,5 42,6		34,9				
N/Z-тип (Виолетта)	28,3	30,6	38,3	32,4				
HCP ₀₅	1,7	2,1						
Рекомендуемый срок уборки (28 сентября)								
Z-тип (Олесия КВС EPD®)	33,6	40,5	60,8	45,0				
Z-тип (Кармелита)	29,0	41,6	49,8	40,1				
N-тип (Победа)	35,3	40,0	47,6	41,0				
N/Z-тип (Виолетта)	28,4	50,3	42,5	40,4				
HCP ₀₅	2,5	2,7						

К основным показателям, характеризующим продуктивность сахарной свеклы, помимо урожайности, относятся процентное содержание сахара в корнеплодах и сбор сахара с гектара. В свою очередь, сахаристость зависит от многих факторов, важнейшими из которых являются тип гибрида, вносимые удобрения, степень увлажнения, а также состояние листового аппарата как ассимиляционной структуры.

Средние значения сахаристости и сбора сахара у различных типов гибридов сахарной свеклы в зависимости от сроков уборки представлены на рисунках 2 и 3.

В среднем за годы исследований при ультрараннем сроке уборки наибольшая сахаристость и сбор сахара отмечался у гибридов сахаристого (Z) типа Олесия КВС EPD^{\otimes} – 17,3% и 5,5 т/га. Наименьшая - у гибрида нормального (N) типа Победа – 16,4% и 4,2 т/га. Это связано с тем, что этот тип гибридов при ранних сроках уборки имеет низкую урожайность и сахаристость.

При уборке в ранний и средний срок максимальная сахаристость и сбор сахара имели гибриды сахаристого типа Олесия КВС EPD^{\otimes} 19,6% и 7,4 т/га, минимальная - у гибрида нормального (N) типа Победа — 17,8% и 5,6 т/га.

Аналогичные показатели были получены и при среднем сроке уборки, однако сахаристость у всех гибридов выровнялась и находилась в пределах от 19,4 - 20,9%. Наивысший сбор сахара отмечался у гибридов сахаристого (Z) типа Олесия КВС ЕРР (8,4 т/га) и Кармелита (7,5 т/га); наименьший - у гибрида нормально-сахаристого (N/Z) типа Виолетта (6,6 т/га). Максимальная сахаристость и сбор сахара в этот период у сахаристых типов гибридов сахарной свеклы объясняется тем, что гибриды сахаристого типа обладают высокой потенциальной сахаристостью. В конце августа дигестия у этих типов гибридов достигает достаточно высоких значений и несмотря на более низкую урожайность корнеплодов, сбор сахара остается высоким.

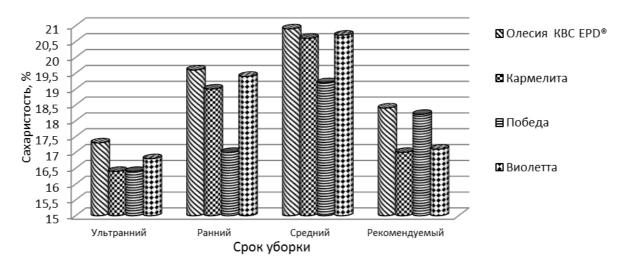


Рис 2. Сахаристость у различных типов гибридов сахарной свеклы и вариантов их подготовки в зависимости от сроков уборки (среднее за 2008-2010 гг.)

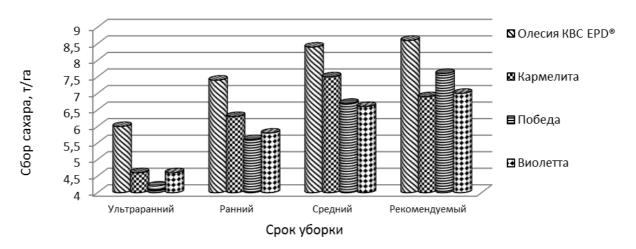


Рис. 3. Сбор сахара у различных типов гибридов сахарной свеклы и вариантов их подготовки в зависимости от сроков уборки (среднее за 2008-2010 гг.)

С наступлением рекомендуемого срока уборки наибольшая сахаристость и сбор сахара наблюдался у гибридов сахаристого Олесия КВС ЕРО[®] 18,4% и 8,6 т/га и нормального (N) типа – Победа 18,2% и 7,6 т/га, наименьший у гибридов нормально-сахаристого (N/Z) типа Виолетта 17,1% и 7,0 т/га и сахаристого (Z) типа Кармелита 17,0% и 6,9 т/га.

Загрязненность и засоренность корнеплодов является одним из важных критериев организации уборки сахарной свеклы.

Данные рисунка 4 свидетельствуют, что за годы исследований наименьшая загрязненность и засоренность корнеплодов отмечалась при ультрараннем и раннем сроках уборки и находилась в пределах от 5,0 до 6,1%. Это объясняется низкой влажностью почвы в этот период и повышенной прочностью связи черешков листьев с головками. Для этого периода характерна оптимальная влажность почвы, при которой она хорошо крошилась и удалялась с корнеплодов.

К среднему сроку уборки загрязненность и засоренность повышалась. Постепенный рост загрязненности корнеплодов, начиная с 1 по 28 сентября, отмечен во все анализируемые годы. Этот период характеризовался интенсивным выпадением осадков, в результате чего при рекомендуемом сроке при повышенной влажности почвы ухудшились ее технологические свойства - повышалась липкость. В следствии этого загрязненность и засоренность повысилась по сравнению с ранними сроками уборки и находилась в пределах от 10,5-11,0%.

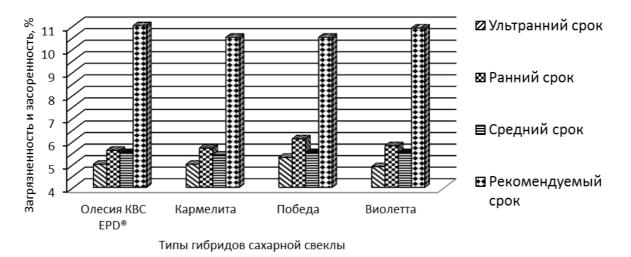


Рис. 4. Среднее значения загрязненности и засоренности за годы исследования (2008-2010 гг.)

Рассматривая экономические показатели различных типов гибридов при ультрараннем сроке уборке можно прийти к выводу, наибольшая рентабельность при ультрараннем сроке уборке отмечалась у гибридов сахаристого (Z) типа Олесия КВС $EPD^{®} - 31,9\%$ и Кармелита -21,9%.

На результаты экономической эффективности за годы исследований большое влияние оказали климатические условия и ценовая конъектура.

При раннем сроке уборки показатели увеличились, по сравнению с ультраранним сроком уборки, так наибольшую рентабельность вновь наблюдалась у гибридов сахаристого (Z) типа Олесия КВС $EPD^{®} - 47,6\%$ и Кармелита - 43,7%.

При среднем сроке уборке наибольшую рентабельность показали гибриды сахаристого (Z) типа Олесия КВС EPD® - 74,3% и Кармелита – 65,4%, у гибрида нормального (N) типа Победа – 56,6%;наименьшая у гибрида нормально-сахаристого (N/Z) типа Виолетта – 48,6%

Таблица 4 - Экономическая эффективность выращивания различных типов гибридов сахарной свеклы и вариантов их подготовки в зависимости от сроков уборки (2008-2010 гг.)

Типы гибридов	Себестоимость продукции, руб/т			Рентабельность производства, %				
	2008г	2009г	2010г	Среднее	2008г	2009г	2010г	Среднее
	Ультраранний срок уборки (8 августа)							
Z-тип (Олесия			_	-				
KBC EPD [®])	13711	22744	14751	17069	-1,5	7,3	89,8	31,9
Z-тип (Кармелита)	13813	22306	17673	17930	-2,3	9,4	58,4	21,9
N-тип (Победа)	13933	22077	20877	18962	-3,1	10,5	34,1	13,8
N/Z-тип(Виолетта)	13818	20750	21596	18721	-2,3	17,6	29,7	15,0
	Ранний срок уборки (18 августа)							
Z-тип (Олесия КВС EPD [®])	12000	18736	13995	14910	12,5	30,2	100,1	47,6
Z-тип (Кармелита)	12188	16158	16541	14962	10,8	51,0	69,3	43,7
N-тип (Победа)	12372	16902	16357	15210	9,1	44,4	71,2	41,6
N/Z-тип(Виолетта)	12217	16642	18984	15948	10,5	46,6	47,5	34,9
Средний срок уборки (28 августа)								
Z-тип (Олесия КВС ЕРО®)	9381	14868	13036	12428	43,9	64,1	114,8	74,3
Z-тип (Кармелита)	9717	15136	14286	13046	38,9	61,2	96,0	65,4
N-тип (Победа)	10444	15015	15737	13732	29,3	62,5	77,9	56,6
N/Z-тип(Виолетта)	10196	15444	18009	14550	32,4	58,0	55,5	48,6
Рекомендуемый срок уборки (28 сентября)								
Z-тип (Олесия								
KBC EPD®)	9712	14253	12365	12110	39,0	71,2	126,5	78,9
Z-тип (Кармелита)	10886	14746	15625	13753	24,0	65,5	79,2	56,2
N-тип (Победа)	9642	14000	15856	13166	40,0	74,3	76,6	63,6
N/Z-тип(Виолетта)	10953	14115	16531	13867	23,2	72,9	69,4	55,2

В рекомендуемый срок уборки показатели себестоимости имели следующие значения: у гибрида N/Z типа Виолетта - 13867 руб/т, Z типа Кармелита - 13753 руб/т, N типа Победа - 13753 руб/т и Z типа Олесия КВС EPD® - 12100 руб/т Наибольший показатель рентабельности наблюдался у гибридов Z типа Олесия КВС EPD® 78,9% и N типа (Победа) – 63,6%.

Таким образом, уборку сахарной свеклы в условиях острого дефицита влаги целесообразно начинать в конце августа и убирать в первую очередь сахаристые (Z) типы гибридов, а затем нормальные (N) и нормально-сахаристые (N/Z). Можно предположить, что целесообразность уборки сахарной свеклы в ранний срок повысится при благоприятных условиях увлажнения. Наибольший эффект использования технологии EPD® проявляется при благоприятных погодных условиях в начальный период развития сахарной свеклы.

ЛИТЕРАТУРА

- 1. Ковтун Ю.И. Качество корнеплодов сахарной свеклы // Сахарная свекла.- 1990. №6. С. 6-7
- 2. Нанаенко А.А. Нанаенко А.К. Информационная помощь производства // Сахарная свекла.-2002.-№7. -С.17-18
- 3. Пыркин В.И., Кисель О.А., Гизбуллина Л.Н., Москаленко В.П., Шутенко О.Н., Цвигун Г.В. // Сахарная свекла.- 2007.-№1.- С.15-18
- 4. Удобрение сахарной свеклы при интенсивной технологии возделывания. Методические указания. М.: Агропромиздат, 1991. 18-20 с.
- 5. Шпаар Д., Дрегер Д., Захаренко А.А. и др. Сахарная свекла (выращивание, уборка, хранение) /Под общей редакцией Д. Шпаара. М.:ИД ООО «DLV АГРОДЕЛО» 2006-315 с.
- 6. www.kws-rus.com