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6. Dynamics of boundary layer

6.1. Boundary layer structure

During the last twenty years mathematical modeling of turbulent flows of fluid has been successfully developed in several directions at once [1, 19-54, 59-70, 74-128]. Methods of direct numerical simulation (DNS) [66, 116], large eddy simulation (LES) [140], and different models, based on Navier-Stokes equations averaged according to Reynolds's method [28-38, 44, 51] have to do with these directions. The theory of hydrodynamic instabilities and transition to turbulence was proposed, which is based primary on the mathematical ideas about behavior of the dynamical systems [141-142]. The fractal geometry theory developed by Mandelbrot [143] has been used to explain the chaos and intermittence in the hydrodynamic turbulence [144-145]. To obtain the numerical solutions of applied multidimensional problems the effective numerical algorithms have been created [146-147].

The boundary layer is a typical self organized flow formed around any rigid body moving in the viscose fluid at high Reynolds number. To illustrate the common problems of the boundary layer theory let us consider the structure of the boundary layer on the flat plate in adverse pressure gradient - see figure 6.1. This flow includes the laminar boundary layer (1), the transition flow (2), the turbulent boundary layer (3) and the separated turbulent flow (4).  

The laminar boundary layer is a well predicted and sufficiently investigated flow. But this flow is not a stable at high Reynolds number, because it can be like an amplifier for the waves of small amplitude. 
The transition layer has a complex structure considered by many authors [62, 141, 145, 149-151]. As it was shown by Jigulev [149] and Betchov [150] this flow domain includes seven sub-regions:

1) the laminar flow region in which the small disturbances are generated. This part of flow is considered often as a starting point of transition layer. The Reynolds number of initial point of transition layer is a very sensitive to the boundary conditions on the wall and in the outer flow. The estimated value of the Reynolds number of transition is  
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2) the quasi-laminar flow region in which the amplitude of linear waves (called  the Tollmien-Schlichting waves) grows up to the critical value 
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. The typical scale of this region is about 
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 is a local thickness of the boundary layer;

3) the nonlinear critical layer where the interaction between waves and main flow leads to the new unstable state. The typical scale of this region can be estimated as 
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4) 3D waves region with scale  
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 . In this region initial two-dimensional waves are transformed into three-dimensional waves;

5) the region of the secondary instability in which the short length waves are generated. The typical scales of this zone are about 
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6) the Emmons sports region with typical scales 
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. In this part of flow the non-equilibrium process leads to the turbulent spectrum of velocity fluctuations;

7) the initial region of the turbulent flow in which 
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The transition from the laminar flow to the turbulent flow is a very attractive phenomenon from the mathematical point of view. Really the initial laminar flow, which is not consisting of any chaotic waves, then suddenly transforms to the state with a chaotic behavior. This problem of transformation called "dynamical chaos" has been investigated by many authors (see for instance [142, 145]). 

The theory of the "dynamical chaos" is based mostly on the analyses of the simplifier dynamical systems (Lorenz-like chaos) which can't be used directly for the boundary layer problem. 
The turbulent boundary layer is characterized by chaotic pulsation of the flow parameters. The surface which separates the turbulent stream from the outer flow looks like a rough surface. The thickness of the turbulent boundary layer in zero pressure gradient increases with a distance approximately as a power function
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, and the skin friction coefficient slowly decreases with the Reynolds number increasing as   
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Figure 6.1: A) The boundary layer on the flat plate in adverse pressure gradient: 1 - laminar boundary layer; 2 - transition layer; 3 - turbulent boundary layer; 4 - turbulent separated flow; B) the thickness of the laminar boundary layer in the air flow at 
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; C) the mean height of the separating boundary layer according to Simpson et al [148]     

The turbulent boundary layer in adverse pressure gradient separates out from the rigid surface and the boundary layer thickness increases as it is shown in Figure 6.1,c. This part of the boundary layer is not so well predictable as a laminar flow, thus till now the separated turbulent boundary layers were studied only in partial cases primary by experimental way (see Simpson et al [148]).  

The turbulent boundary layer can be modelled on the theory of turbulence which was explained in Chapter 2. But it is a very interesting fact that the laminar flow and transition layer also can be described by the equation system (2.14) derived from the Navier-Stokes equations (NSE) due to the special type of transformation (2.1). Let us consider the application of the turbulence theory to the quasi-laminar boundary layer, i.e. to the boundary layer flow which has some symptoms of turbulent flow.               

6.2. Laminar boundary layer 

The general solution for the laminar flow can be found on the base of the boundary layer approximation of the Navier-Stokes equations in the Prandtl's form: 
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Here the pressure gradient is given by equation (4.17), thus


[image: image19.wmf]r

¶

¶

¶

¶

U

U

x

p

x

0

0

=

-

.                                         (6.2)

To derive model (6.1) from the Navier-Stokes equations we should suppose that 

a) the laminar boundary layer is a two-dimensional flow, i.e. 
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b) the normal to the wall velocity gradient sufficiently exceeds the parallel to the wall velocity gradient, i.e. 
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c) the normal to the wall pressure gradient is so small that it can be neglected, therefore the pressure distribution is described by the Bernoulli equation (6.2).

It can be shown that the sufficient condition, to satisfy suppositions b)-c), is that the Reynolds number computed on the distance from the plate edge has an extremely high value, i.e.   
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 Boundary conditions for the quasi-linear diffusion equation (6.1) can be set as follows:
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The first equation (6.1) can be satisfied automatically if we define a flow function as follows 
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Problem (6.1)-(6.3) has a self-similarity solution for the boundary layer in a zero pressure gradient. In this case 
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,  thus the first and third condition (6.3) are identical that means that a solution of this problem depends on  the universal variable  
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, then the velocity components can be rewritten as  functions of the universal variable, i.e.,
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Substituting these expressions in the second equation (6.1) one can find that the universal function  
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 is described by the following equation (see, for example, [51, and 58]):
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The boundary conditions for equation (6.6) (these conditions can be derived from (6.3)) have a form
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The problem (6.6-6.7) can be solved numerically using the algorithm described above in subsection 2.4.2. For the initial iteration one can put 
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 (see [51]) that gives in practice the precise solution. Obviously that it's impossible to satisfy last condition (6.7) in a numerical procedure. Hence instead of it as usual the boundary condition in the outer region has used, 
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 [51]. Thus the boundary layer depth can be defined as a point where, for instance, 
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This function is shown in Figure 6.1,b to illustrate the typical scale of laminar boundary layer in the air flow at  
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The boundary layer thickness is not a constant; it slowly increases down to the stream so that
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This equation gives the normal to the wall velocity scale which can be defined as  
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The normalised velocity profiles in the laminar boundary layer are shown in Figure 6.2. The normal to the wall velocity normalised on the scale 
[image: image43.wmf]dt

dh

w

/

0

=

 has a limit value at 
[image: image44.wmf]¥

®

h

: 
[image: image45.wmf]72

.

1

/

0

=

w

w

. The positive value of this velocity component means that the stream lines starting from the boundary layer then penetrate in the outer flow region.
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Figure 6.2: The normalised velocity profiles in the laminar boundary layer in zero pressure gradient: 1 - 
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The normal to the wall velocity scale decreases with distance as  
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. Thus near the transition layer this scale has a very small value which has never been taken into account in the theory of transition to turbulence. 

The skin friction coefficient can be defined for the laminar flow as 
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The self-similarity solutions (6.5) found for the laminar flow (called the Blasius flow) is only type of the self-similarity solutions of the Navier-Stokes equations (NSE). Let us give a proof that the Blasius flow can be described by equation system (2.14). Really all solutions of the equation system (2.14) which was derived from NSE are presented by the self-similarity functions. Therefore, we can select from (2.14) also solution for the Blasius flow. First of all note that in this two-dimensional flow   
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The Blasius solution corresponds to the special case when 
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In this case the second eq. (6.12) has a form 
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The boundary layer approximation (6.1) is applicable only for very high Reynolds number, i.e. for 
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6.3. Transition to turbulence 

6.3.1. Continuous transition to turbulence 

Passing through the transition layer the laminar stream transforms into the turbulent flow. There are several models of transition to turbulence (see  [58, 141, 145, 149] and other). From the point of view of the turbulence theory considered above the parameter characterized the dynamical roughness structure, i.e. 
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The general solution (2.16) of the turbulent incompressible flow model (2.14) can be used to analyze the transition from the Blasius flow to the turbulent flow.  Put  
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where a function 
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with  boundary conditions 
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where 
[image: image83.wmf])

,

(

y

t

Q

 is an arbitrary function. 

6.3.2.  3D Transition to turbulence

The first scenario of spatial continuous transition to turbulence is that  
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  we have exactly the Blasius flow solution - see Figure 6.3. Put 
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As it follows from this equations if 
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 increases then the dynamical roughness parameters also increase and the laminar boundary layer velocity profile (the Blasius profile (1) in Figure 6.3) transforms into the turbulent boundary layer velocity profile (6) - see Figure 6.3. 
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Figure 6.3: Continuous transition from the laminar flow (the Blasius velocity profile (1)) to the turbulent flow (the logarithmic velocity profile (6)). Profiles 1-6 are computed on (6.17)-(6.18) for 
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Figure 6.4: Continuos transition to turbulence: 1 - the mean velocity profile in the turbulent boundary layer according to Van Driest [65],  2, 3 - the mean velocity profiles in the transition layer computed on the model (6.24), (6.25) for   
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[image: image108.wmf]2

/

p

a

=

 one can derive the asymptotic formula for the streamwise velocity gradient, i.e.  

[image: image109.wmf]1

,

)

(

)

0

(

~

0

>>

»

-

-

h

h

h

h

h

n

n

n

e

u

d

u

d

b

I

                                 (6.22)
Here 
[image: image110.wmf]3

2

4

/

1

2

/

n

n

b

»

=

g

 for 
[image: image111.wmf]1

³

n

. Used the inner layer variables for the mean velocity scaling the last equation can be rewritten as follows


[image: image112.wmf]b

I

z

z

e

dz

du

÷

÷

ø

ö

ç

ç

è

æ

»

+

+

+

-

+

+

+

l

l

0

.                                         (6.23)
Calculated the exponent 
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Using the inner layer variables we can rewrite the model of spatial transition to turbulence in the form      
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The mean velocity profiles computed on the model (6.24) for  
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Figure 6.5: Continues transition to turbulence: 1 - the mean velocity profile in the turbulent boundary layer according to Van Driest [65],  2-4 - the mean velocity profiles in the transition layer computed on the model (6.24), (6.26) for   
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The main difficulty of model (6.24) is that the estimated streamwise velocity profile (3) is not really the logarithmic profile in the turbulent boundary layer over smooth surface as it should be, but it is the logarithmic profile which can be in the turbulent boundary layer over a rough surface. Thus the skin friction coefficient of this flow is higher then in the turbulent boundary layer with the similar thickness and free stream velocity. 
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Using the constant of the logarithmic profile, we can estimate an additional parameter, i.e. 
[image: image142.wmf]v

. The mean velocity profiles computed on the model (6.24), (6,26) for 
[image: image143.wmf]5

.

3

=

y

h

  and 
[image: image144.wmf]537

.

2

;

1

;

0

=

v

 are shown in Figure 6.5 - the solid lines (2-4) respectively. 

This model consists of three parameters 
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6.3.3.  2D Transition to turbulence

It's a well known fact that the transition layer includes the quasi-laminar flow region in which the amplitude of linear Tollmien-Schlichting waves grows up to the critical value 
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with boundary conditions
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The numerical data for dimensionless velocity gradient, 
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There is no a logarithmic profile in 2D flow, but in this type of transition the drag increases up to the value which is typical for the turbulent boundary layers. Really, substituting an expression of the roughness surface parameter 
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 in formula (6.29) we can derive an equation for the skin friction coefficient as follows
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 the last equation exactly gives the Schlichting formula for the skin friction coefficient in the turbulent boundary layer, i.e.  
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Figure 6.6: The velocity profiles in 2D transition layer calculated on  (6.27)-(6.28) for 
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[image: image170.wmf]x

t

h

U

h

0

/

=

v

 (square symbols) together with the approximated solid line (right)  

On the other hand as it was shown in subsection 2.4.3, in the turbulent boundary layer also we have 
[image: image171.wmf]14

.

0

/

*

=

nu

h

t

. Thus the typical value of the dynamical roughness gradient parameter is about 
[image: image172.wmf]1

»

n

. Taken into account that 
[image: image173.wmf]2

2

2

Re

4

/

1

y

y

x

h

h

n

»

+

»

 we can conclude that the transversal gradient 
[image: image174.wmf]1

»

y

h

,  therefore 
[image: image175.wmf]2

/

)

Re

2

arctan(

p

a

»

=

x

y

h

. Obviously that a negative value 
[image: image176.wmf]1

-

»

y

h

 also available with the same probability as a positive value, because as it follows from second equation (6.15) 
[image: image177.wmf]a

2

sin

v

~

µ

, and hence the mean transversal velocity 
[image: image178.wmf]0

2

sin

v

~

=

µ

a

.

6.4. Spectral characteristics of turbulent flows  
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 is the Reynolds number calculated on the dynamical roughness parameters. The boundary conditions for this model can be proposed as follows
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There are several models which have been proposed to describe the spectral density in the turbulent boundary layers (see Simpson et al [148], Tennekes & Lumley [152], Perry et al [154] and other). The widely used spectral density in the logarithmic layer is given by  
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 Here  
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 is the normalizing factor which can be calculated from (6.36).
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Figure 6.7: The inverse length scale  
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Suggesting that the flow wave number in the logarithmic layer depends on the dynamical roughness Reynolds number  as the  linear function, i.e. 
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therefore 
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The spectral density computed on (6.35), (6.37) is shown in Figure 6.8 (solid lines) together with the experimental data by Hussain & Reynolds [153] obtained in the turbulent channel flow. The experimental values and estimated parameters for the data are listed in Table 6.1. The boundary layer height
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As it was established both spectral density parameters 
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 slowly depend on the distance from the wall. In the inner layer the experimental data is in a good agreement with the predicted spectral density (a, b). But in the outer region the correlation is not so good (c, d). It can be explained by the mixed layer contribution in the velocity pulsation. 
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Figure 6.8: The spectral density of the streamwise velocity pulsation in the turbulent channel flow computed on (6.37) (solid lines) and the experimental data by Hussain & Reynolds [153] measured at the distance from the wall 
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Table 6.1 Input data for Figure 6.8 

	Figure
	6.8 a
	6.8 b
	6.8 c
	6.8 d
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The local rate of dissipation of the mean flow kinetic energy in the logarithmic layer is given by
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The optimal parameter 
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 brings a maximum for the second turbulent velocity scale and a minimum for the Karman constant. In turn the minimum of the Karman constant is related to the maximum of the local rate of dissipation of the mean flow kinetic energy. 

Using the dynamic roughness parameter we can propose the scaling for the local rate of dissipation of the mean flow kinetic energy in the logarithmic layer as follows
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 is the scale of time in the inner layer. 

Apparently it means that the Karman constant should be determined as 
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. Therefore two another constants of the theory are given by  
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. This is the final closure. Hence this theory of turbulence is the completely closed theory, because all parameters have been calculated within the theory from the "first principles".
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