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1. Introduction

The study of the rough wall turbulence is important in fluid mechanics, in the atmosphere and ocean and in engineering flows. The rough surface effect on the turbulent boundary layer has been considered by Nikuradse (1933) Schlichting (1936, 1960), Bettermann (1966), Dvorak (1969), Simpson (1973), Dirling (1973),   Dalle Donne & Meyer (1977), Jackson (1981), Osaka & Mochizuki (1989),  Raupach (1992) and other. 
Nikuradse (1933) established (for sand-roughened pipes), that if the roughness height significantly exceeds the viscous sublayer thickness, then the mean velocity profile can be described by the logarithmic function:


[image: image1.wmf]U

u

z

k

c

s

s

t

k

=

+

1

ln

                                                        (1)

where 
[image: image2.wmf]u

t

 is the friction velocity, 
[image: image3.wmf]u

t

t

r

=

/

, 
[image: image4.wmf]t
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 is the fluid density, z is the distance from the wall - see Figure 1, 
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 is the characteristic scale of the sand roughness, 
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 for the completely rough regime. He compared the mean velocity profile (1) with the law of the wall, derived by him before in 1932 for turbulent flows in smooth pipes, as follows 
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where 
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 is the kinematic viscosity, 
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 are the logarithmic profile constants for the hydraulically smooth surface. 
[image: image12.wmf]D

U

 is the shift of the mean velocity logarithmic profile which can be defined for the turbulent boundary layer over a rough surface as
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 for the completely rough regime. Nikuradse has shown that the dimensionless roughness height parameter 
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 can be used as an indicator of the rough wall turbulence regime. He proposed to consider three typical cases:

· the hydraulically smooth wall for   
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· the transitionally rough regime for 
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· the completely rough regime for 
[image: image21.wmf]k

s

+

³

70

, 
[image: image22.wmf]D

s

»

-

3

0

.

.

Thus, the sand-roughened wall turbulence depends on the dimensionless roughness height (roughness Reynolds number) 
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 as has been established by Nikuradse.

Schlichting (1936), used the Nikuradze's date base and his own experimental results obtained in the water tunnel of rectangular cross section with the upper rough wall,  proposed the new form of the equation (1) which is well counted the roughness effect on the turbulent boundary layer by means of the effective wall location (
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) and the equivalent sand roughness parameter 
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. With this parameters the mean velocity profile in the turbulent flow over an arbitrary rough surface can be written in the Nikuradze's form (1) as follows:
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 (see Figure 1). The effective wall location was defined by Schlichting as the mean height of the roughness elements (the location of a "smooth wall that replaces the rough wall in such a manner as to keep the fluid volume the same"). The value 
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 has been measured  by Schlichting for several types of the roughness elements with various shapes, sizes and spacing. The Schlichting's experiment was re-evaluated by Coleman et. al. (1984) and they noticed that some Schlichting's data have been obtained in the transitional rough regime.


[image: image29.png]
Figure 1: The scheme of the turbulent flow over a rough surface (left), and the roughness elements  are considered in the paper (right): spheres, spherical segments, conical elements (3D) and transverse rectangular roods (2D)  

Clauser (1956) has shown that the shift of the mean velocity profile can be written as 
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where 
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 is the characteristic scale of roughness elements and 
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 must be some function of the roughness geometrical parameters. Hence the equivalent sand roughness parameter 
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 for sand roughness.
Bettermann (1966) discovered that 
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 is the function of the roughness elements spacing. He introduced the roughness density parameter for roughness composed of the transverse square bars as the pith-to-height ratio, 
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 - see Figure 1. Bettermann found that in the range  
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 with the roughness density can be specified by
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As has been demonstrated by Dvorak (1969), the rough wall effect is well correlated with the roughness density parameter defined as pitch-to-width ratio or the ratio of total surface area to roughness area, 
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. Dvorak developed the Bettermann's model in the range 
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, used the data of Schlichting and other researches, as follows:
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Simpson (1973) introduced the roughness density parameter in the case of three-dimensional (3D) roughness as 
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 is the number of significant roughness elements per unit area, 
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 is the average frontal area of the "significant" roughness elements. He suggested the general interpretation of the Bettermann-Dvorak correlation (5): two branches (5) exist depending on the formation or absence of transverse vortices between roughness elements. Simpson also showed that the shape of the element is an important parameter. 

The model been reported by Dirling (1973) and verified by Grabow & White (1975), takes into consideration the roughness elements shape parameters. The Dirling's density parameter is defined as 
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 where 
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 is "the windward wetted surface area". In a case of two-dimensional (2D) roughness the Dirling's parameter leads to the Bettermann's roughness density parameter.  As it was shown by Sigal & Danberg (1990) the shape parameters effect can be described by the similar correlation such equation (5) and that 
[image: image48.wmf]D

=

2

2

.

 for the two-dimensional roughness in the range 
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.  They also underlined that the correlation for 2D roughness elements is not the same as for 3D elements. On the other hand, Kind & Lawrysyn (1992) confirmed that the Bettermann-Dvorak function 
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 in the form (5) can be successfully used for the correlation of the experimental data in the aerodynamic experiments with the natural hoar-frost roughness. 

Dalle Donne & Meyer (1977) correlated their data and those of previous researches (19 data bases considered below in section 3.4) used the roughness density parameter 
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. They developed the empirical model which can be applied to the turbulent flows in the annuli and tubes with inner surface roughened by rectangular ribs.       

Osaka & Mochizuki (1989) examined d-type rough wall boundary layer in a  transitional and a fully rough regime. They have shown that in a transitional rough regime the mean velocity logarithmic profile is confirmed and that the Karman constant  has the same value as for the hydraulically smooth wall flow. 

The mean velocity logarithmic profile widely used in the atmospheric turbulence research is given by (see Monin & Yaglom (1965)):
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where 
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 is the displacement height, 
[image: image54.wmf]z

0

 is the roughness length. Note that 
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 are considered often as some adjustment parameters chosen for the best correlation of the local wind profile in the neutral stratified flow with the logarithmic profile.  The model of the displacement height has been considered by Jackson (1981). The roughness length model was developed by Raupach (1992) and other. The classification of the experimentally determined roughness length for various terrain types was given by Wieringa (1992).
The objective of the present work is to develop the model of the turbulent boundary layer which can be applied to any cases considered above: turbulent flows over smooth surfaces, in the transitional rough regime and for the fully developed roughness. The main idea is to derive the model of the turbulent flow over a rough surface directly from the Navier-Stokes equation. As shown in section 2 the requisite model can be derived from the transformed and averaged Navier-Stokes equation due to the surface layer transformation introduced by Trunev & Fomin (1985) in the impingement erosion model and developed by Trunev (1995, 1996, 1997, 1999, 2000) for the turbulent boundary layer problem. 

2. Turbulent flow model

2.1. Surface layer transformation

The effective wall location was defined by Schlichting (1936) as the mean height of the roughness elements and in the mathematical form can be written as:
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where 
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is the relief of the rough surface - see Figure 1, 
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. In a case of two dimensional roughness considered by Dvorak (1969) and Simpson (1973) the roughness density parameter depends on  width and pitch of the roughness elements (see Figure 1): 
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 is the numerical constant which equals to unity in this case. The shift of the mean velocity can be presented as a function of the mean roughness height. Thus using the Bettermann-Dvorak's equation (5) in the range 
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In this approach the mean velocity profile in the turbulent flow over a rough surface can be rewritten as follows
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If we redefined the main roughness scale then the mean velocity profile takes the form which is widely used in the atmosphere research:
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where  
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. Hence, the logarithmic profile mainly depends on the mean height of the roughness elements in this range of the roughness density. 

Let us consider the random function defined as   
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where 
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 is the random parameter with the mean value given by
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here 
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 is the density of a probability distribution function (roughness statistic function) normalised on unity:
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Both parts of the equation (8)  can be averaged with this function as follows:  
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. With this result the mean-squared-value of the velocity fluctuations can be calculated as
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Thus, the random function 
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can be used for the mean velocity calculation as well as for the mean-squared-value of the velocity fluctuations modelling. Our main idea is that the random function 
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 can be calculated on the basis of a solution of the Navier-Stokes equation due to the surface layer transformation 
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where 
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 is an arbitrary volume put in 

 and containing 

 as a whole, 

 is the subregion in which altitude of the rough surface 

 varies in limits from 

 up to 

, hence by definition 
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Note, that the surface layer transformation is only a kind of averaging procedure which conserves the function properties across a boundary layer. The Navier-Stokes equation can be averaged with the surface layer transformation (9) instead of normal Reynolds averaging method to derive then the equation for the random function 
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. 

Therefore we suppose that there is a surface 

 (the dynamic roughness surface) inside the flow domain which can be used for modelling the rough surface effect on the turbulent boundary layer. Without any limits we can choose a surface 

 close to the wall surface 

, but not equal to 

. Let 

, where 

is the height of the viscous sublayer over the rough surface.   In the turbulent flow the surface 
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 characterising the height, velocity and inclination of the surface elements. Let’s define the subregion 

 in which the local height of the rough surface 

 varies in limits from 

 up to 

 and parameters of the surface 
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, thus 

, where 

 is the multiple density of a probability distribution function. Thus in common case the surface layer transformation can be written as follows (instead of eq. (9))


[image: image92.wmf]~

(

/

,

,

,

,

,

,

)

lim

(

,

,

,

)

u

u

z

h

t

r

h

h

h

h

V

x

y

t

dxdydz

x

y

t

V

dV

V

s

1

1

=

®

ò

d

d

d

h

                             (10)

where 
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The main problem of this method is how to estimate the multiple density of a probability distribution function 

? Nevertheless, for the solutions presented by the logarithmic function we can suppose that
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where the parameters with stars can be estimated from the comparison of solutions with experimental data or calculated from some theoretical considerations. Practically the roughness parameter 

 should be given as an input value and all another parameters can be calculated from the similarity theory considered in sections 2.6-2.7. 

2.2. Input equations

We shall consider the turbulent flow of fluid containing a scalar impurity. Fluid is assumed as viscous, heat-conducting, incompressible gas in a rather slow turbulent motion.  Thus, the model of the turbulent flow is given by:
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where 
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 is the fluid density, 

 is the flow velocity vector, 
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 is the kinematics viscosity, 
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 is the pressure, 
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 is the temperature, 

 is the Prandtl number, 
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 is the mass concentration of an impurity, 

 is the Schmidt number,
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 is the molecular diffusion coefficient. 

Boundary conditions for the flow parameters are set as follows:
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where 
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2.3. Random flow parameters equations

The nontrivial solutions of the Navier-Stokes equations which may play important role in the surface layer turbulent flow organisation can be written as 
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The equations for the random functions 
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 can be derived from the equations (12) written in the curvilinear coordinate system 

. Following Pulliam & Steger (1980) the equations (12) are presented in the form:
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where 

 is the Jacobian, 

,
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Here 

  is the tensor of viscous stress,

, 

  is the dynamic viscosity, 

; 
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In curvilinear coordinate system it is necessary to execute replacements in terms with gradients:



  for 

; 

 , 

Let us consider the special  types of solution of transformed equations (14) which depend only on time and normal variable 
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 as it often suggested in the turbulent boundary layer theory. Thus let’s suppose that  
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 in the left part of (14). In this case eq. (14) can be presented in the form 
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where parameters with tilde are defined similar  to 
[image: image129.wmf]~

(

~

,

~

,

~

,

~

)

S

u

=

p

T

С

 as it follows from (10). In the equation (14') the dissipate terms can be written as
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On the other hand to derive the equation (14') one can applied the averaging operator in the form (10) with an arbitrary averaging volume 

 to equation (14) to conserve the commutative properties of the averaging operator with the space and time differential operators. Then one can consider the limit of all terms of the averaged equation at  
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 is the solution of the transformed Navier-Stokes equations (14) in any sense, then we have the turbulence model closures automatically as follows:
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Here 

  is the kinetic energy of turbulent fluctuations in the small volume 

,

  is the Kronecker delta: 

 for 

, 

 for 

. 

Note, that in this model the Reynolds stress can be calculated as
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Therefore the random function 
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 gives the main contribution in the non-diagonal components of the Reynolds stress. Now we take it as granted because we haven't any contradictions. Hence, the first assumption of this theory is that the turbulence interaction between the hydrodynamic fields can be described with the solutions 
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. The second assumption is that it's possible to neglect longitudinal and transversal gradients of flow parameters in a comparison with gradients across a boundary layer, at least for steady turbulent flow. Finally we have the dynamic equations for random flow parameters as follows: 



                                                     (15)
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where 

, 

, 

(thus the value 
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included in the turbulent pressure). 

The first equation (15) is the continuity equation; the second is the momentum equation. 

Note, that the parameters of a dynamic roughness in equations (15), are not already the functions of space variables or time. Really, in virtue of transformation (10), the values of these parameters are fixed in intervals from 
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. These values, thus, are considered as the random parameters, and the law of their distribution in specific intervals is described by a known function 
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As we can see from the derived equations (15) there are the factors in the higher derivatives terms, which depend on a distance up to a rigid surface. It should be noted also, that the equation (14) is not in the strong conservation form, as, for example, it is given by Pulliam & Steger [59]. Therefore the numbers of terms in square brackets, breaking conservation of this system are chosen in the left part of equations (14) and (14'). Such allocation of non-divergent terms is stipulated by the purposes of modelling of the eddy viscosity, which, in our opinion, arises in a boundary layer from transformation of a tensor of viscous stresses in a neighbourhood of a dynamic roughness surface. It is obvious in the case of viscous flow over a rigid rough surface and is connected with an adhesion of a viscous flow to a rigid surface of any configuration. In the turbulent flow over a smooth surface the eddy viscosity is simulated by analogy to a more widespread type of turbulent flows, as in a special case, when 
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For the diffusion equation it is possible to derive the boundary layer model by the simplified way. Let us suppose that in the last equation (12) 
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and therefore the last equation can be written as
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This equation can be transformed to the form of the last equation (15). According to definition 
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where   
[image: image156.wmf]y

x

L

L

S

=

D

. But the last term is annulled if region  
[image: image157.wmf]y

x

L

L

S

=

D

 is large enough (the divergence theorem). Therefore we have an equation 


[image: image158.wmf]¶h

¶

h

h

¶

¶

h

¶h

¶

¶

¶

C

h

n

D

C

n

h

D

C

h

W

t

C

~

~

)

1

(

~

~

~

2

2

2

2

2

2

2

+

+

=

+


[image: image159.wmf]h

¶

¶

h

n

h

¶

¶

h

h

n

C

h

n

C

n

h

~

Sc

~

)

1

(

Sc

2

2

2

2

2

-

+

¶

¶

=

,

which is identical  to the last equation (15).

2.4. Pressure integral and random flow parameters equations transformation
In the case of an isothermal incompressible flow the hydrodynamic part of the equations (15) can be written as:
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Put 
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 as
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where 

. Substituting 

 from the continuity equation (15') into the second equation (16) and using the first equation (16) finally we have the closed nonlinear model: 
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Multiplying the momentum equation (15') on the vector 
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where 
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Note, that 
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 is the contravariant component of the velocity vector associated with the vertical turbulent movement. As it follows from (17-18), 
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 is the main parameter in this model describing the non-linear turbulent effect.

2.5. Steady turbulent flow model

In the case of a steady turbulent flow put  
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 in (16-18) then the pressure gradient across boundary layer can be written as
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Having substituted this expression in the second equation (16) and rewritten (17-18) in the case of a steady turbulent flow one can find  
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The first integrals of the equations (19) are given by
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where 

 are some constants, 
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Note, that the velocity components are determined as 
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hence, used (20)  one can derive the velocity gradients equations system written in the normal form suitable for the numerical integration: 
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2.6. Nonlinear model numerical solution
The first equation (19) has been numerically solved in the case of the turbulent steady flow over a smooth surface with boundary conditions at
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where 
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First and second boundary conditions (22) are following from the definition of 
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To minimise the number of the independent random parameters the general solution of the first equation (19) can be written as 
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and satisfies to the equation
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with boundary conditions  at
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The integral (26) has been computed in the range  
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In this case 
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has a limited value at 

. It is possible if only 
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This solution has been used as the initial position in the shooting method. 

The normalized function 
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To simplifier the numerical modelling of the mean velocity profile over a rough surface the function 

has been approximated as
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where 

is given by (27).

Finally note that for the negative value of the parameter 
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2.7.  Mean velocity logarithmic profile in turbulent flow over smooth surface

The turbulent boundary layer over a smooth surface is the best example for the theoretical consideration and modelling according to the model (21). In this case the streamwise velocity gradient can be written in the standard form using the inner layer variables 
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 is the Karman constant. As it was suggested in subsection 2.1 we have used parameters with stars instead of random parameters. Finally we have got for the streamwise velocity gradient
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The first term in the right part (29) has the essential value mainly close to the wall (if 
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The numerical solution of the equation (31) with 

determined from (27) gives 

 and therefore the predicted values of the turbulent theory constants are given by 
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Integrated the first equation (32) we have:
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The standard logarithmic profile can be derived from here at 
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Therefore, with the given constant 
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  another constant of the mean velocity logarithmic profile can be calculated from (33). It gives  
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The velocity profile calculated with (32) for 

 is shown in Figure 3, a by the solid line (1). The predicted profile (1) has been compared with the mean velocity profile computed on the model of the transitional layer proposed by Van Driest (1956), which is shown by the solid line (2). As explained by Cebeci & Bradshaw (1984) the Van Driest's model can be written in the form
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The profile computed on (34) coincides with the predicted profile 1 in the viscous sublayer and in the logarithmic layer but differs a bit in the transitional layer (see Figure 3, a). This difference can be explained by the pressure gradient effect. Figure 3,b demonstrates the comparison of both profiles (1,2) with several data bases: 3 - the direct numerical simulation of the turbulent flow in the two-dimensional channel (
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[image: image269.wmf]U

u

z

0

0

+

+

-

=

w

d

(

/

)

, where the universal function 
[image: image270.wmf]w

w

d

=

(

/

)

z

0

weakly depends on the Reynolds number and roughness parameters in the case of a zero pressure gradient. 
 One can suggest that the mixed layer turbulence is generated in the same way as the wall turbulence. Then the new dynamic roughness surface can be introduced and the equation system which is similar to (21) can be derived. In the case of the mixing layer we can put 
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 the general solution for the boundary layer mean velocity profile can be written as (see Trunev (1999))  
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where 
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Profile (35) depends on two dimensionless values which have been defined from experimental data as 
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. The mean velocity profile and defect low calculated on (35) are shown in Figure 3, c-d, together with experimental data by Nagano et all (1992). Note, that the agreement between theoretical and experimental results in general is good.
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Figure 3. Mean velocity profile in the turbulent boundary layer: a) profiles computed on the present model (1) and van Driest model (2); b) comparison of computed profiles (1-2) with DNS data (3) and experimental data (4-5); c) the solid line is computed on eq.(35), experimental data Nagano et all (1992) presented by symbols d) defect low: the solid line 1 is computed on eq. (35), 2,3 - experimental data by Nagano et all (1992)   

3. Rough surface effect modelling

3.1. Rough  surface model 

The additive dynamic roughness surface model considered above is given by




where 

is the height of the viscous sublayer over the rough surface. Averaged this equation over a large area 

 we have: 

, where 

 is the mean roughness height,



                                              

 After replacing of the origin of the coordinate system in the new position 

  the dynamic roughness equation can be written as:

 

                                        (36)

where  

. Thus, we can imagine the smooth wall located at  

 as was defined by Schlichting (1936) and the dynamic roughness surface with dynamic roughness parameters given by (36). For this problem we should suggest that    
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Note that the fluid flow near the plane surface 

 is a typical heterogeneous flow included  two parts:  the roughness rigid elements part  
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 can be considered as a function of the Dvorak's roughness parameter: 
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In the case of the surface roughened by spherical segments (see Figure 1) we have: 
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where, 
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In the case of the surface with conical uniform elements 
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In the case of two dimensional roughness as it has been considered by Bettermann (1966),  Dvorak (1969) and Dalle Donne & Meyer (1976) 
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The mean liquid surface between the roughness elements at 

 equals to
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[image: image308.wmf]m

r

n

m

=

=

-

(

/

)

1

1

L

a

 .  

Thus 
[image: image309.wmf]L

L

a

a

a

r

=

(

)

is the important parameter for the rough surface effects modelling because the boundary condition for the mean velocity gradient should be given at 

.    

3.2. Mean velocity logarithmic profile in turbulent flow over rough surface
The mean velocity logarithmic profile in the turbulent flow over the rough surface can be derived from (32) written in the new coordinate system: 
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The boundary condition for the equation (38) on the effective smooth wall is given by
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where  
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 is the effective shear stress applied to the effective smooth wall at 

.  Thus for the dimensionless mean velocity gradient on the effective wall in common case one can propose the equation
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As it follows from the mean velocity logarithmic profile in the turbulent flow established by Schlichting (see eq. (4)) the dimensionless turbulent length in the first equation (38) depends on the roughness parameters and thus can't be defined from an equation similar to eq. (30). To define 
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But this equation also follows from (38) if we put 
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The mean velocity logarithmic profile follows from (40) at the long distance from the wall. Put 
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This equation can be rewritten in the standard form as follows:
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where 
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. Note, that the finale result (41) mainly depends on the mean velocity gradient applied to the effective smooth surface at 
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3.3. Roughness density effect model

There are two available cases which can be realised in the experimental situation: the roughness elements installed on the absolutely smooth surface and the roughness elements installed on the rough surface. In the first case we surmise that the mean velocity gradient applied to the effective smooth wall is proportional to the velocity gradient over a smooth surface given by the first equation (32) for  

. Used the boundary condition (39,b) we have:     
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where the shape parameter
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 introduced to estimate the frontal and leeward re-circulation zones effect, 
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here 
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is the transitional layer parameter. Note, that for the high value of the roughness density parameter may be 
[image: image340.wmf]k

r

+

>>

1

 (completely rough regime in the classical sense), but simultaneously  
[image: image341.wmf]r

k

a

r

s

+

+

=

£

a

/

L

1

. Thus 
[image: image342.wmf]g

=

1

 for the completely rough regime (in the non-classical sense) defined only for 
[image: image343.wmf]r

a

+

+

>>

l

0

 as it follows from the second equation (43). The main turbulent length scale can be estimated from (43) as 
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Substituted 
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 from (43) into the second equation (41) finally we have:
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The rough surface effect model (44) depends on two parameters 
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In the second case the mean velocity gradient model is the same as (44) but we should put 
[image: image350.wmf]r

k

r

a

r

s

g

=

+

a

/

L

 where 
[image: image351.wmf]r

g

the averaged height of the background roughness is. Both models have been testified and shown the good agreement with the experimental data.

3.4. Modelling of roughness density effect.  3D roughness elements

To test the roughness surface effect model (44) the turbulent flow data for 3D roughness elements obtained by Schlichting (1936) and re-evaluated by Coleman et. al. (1984) has been used. The main result reported by Coleman et. al. (1984) is that some Schlichting's data was obtained probably in the transitionally rough regime. The experimental techniques in Schlichting's (1936) and  Coleman et. al. (1984) experiments have been analyzed and it was surmised that Schlichting's data was measured in the fully rough regime but some details of his experimental technique have not been reported. 

The computed (1) and experimental data by Schlichting (3) and Coleman et. al. (5) are shown in Figure 4 for spheres (Fig. 4,a), spherical segments (Fig. 4,b) and cones (Fig. 4,c). The points (4) are computed from the experimental data by Coleman et. al. (5) which has been corrected with transitional layer parameter 
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The corrected data has been used to estimate the parameters 
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where the roughness parameters  
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The magnitude 
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 can be explained in terms of the rough surface drag which has the same value for the spheres and conical elements and mach less for the surface with spherical segments. The mean fluid density parameter is 
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The experimental data for the surfaces with spheres, spherical segments or conical elements can be collected together used an "universal" parameter wich is different from that proposed by Bettermann (Dvorak (1969), Dirling (1973), Simpson (1973), Kind & Lawrysyn (1992) and other. This correlation is available for the high roughness density parameter at 
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Figure 4. Roughness density effect on the turbulent flow in a case of 3D roughness elements: a) spheres; b) spherical segments; c) cones; d) the generalised correlation  
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and therefore the "universal" parameter is given by 
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 is shown in Figure 4, d with the corrected experimental data for the rough surfaces with  spheres (2), spherical segments (3) and  conical elements (4) .  The classic sand grain-roughened pipe flow experiment of Nikuradse (1933) with  
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 is presented by point (5). The hoar-frost roughness data of Kind & Lawrysyn  (1992) is plotted by points (6). Note, that data of Kind & Lawrysyn  (1992) has been corrected with transitional layer parameter
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 is the averaged height of the background roughness, 
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 depends on the frost formation and has been calculated for the plate 1-6 of Kind & Lawrysyn  (1992) as follows 
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 as for the conical elements. The experimental data for 3D roughness elements of Simpson (1973) is shown by symbols (7). For his data 
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Thus one can suggest that the rough surface with spheres is the basic case for 3D roughness elements, because all data shown in the Figure 4, d is correlated well with the basic line (1). 

Then one can propose the model for
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  the "universal" parameter is related to that of Bettermann (1966)  since in the case of transverse square bars 
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3.5. Modelling of roughness density effect.  2D roughness elements

The empirical model of Dalle Donne & Meyer (1977) for 2D roughness composed by the transverse rectangular rods is based on the roughness density parameter
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With this parameter the experimental data of Dalle Donne & Meyer (1977) and other sources summarized in Table I can be described as follows
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This correlation has been derived by Dalle Donne & Meyer (1977) for the range of the experimental data parameters 
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As it is shown (see (46)) the rough surface effect depends on two roughness parameters 
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 calculated according to ( 46) - solid line (1) and the experimental data found for 2D roughness elements by various authors listed in Table 1 (the corrected and reduced data or 
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 from Table 2 of Dalle Donne & Meyer (1977) has been used as long as correlation (46) was proposed for this values).The symbols description is given in the right part of Figure 5 and Table 1. As it is shown the correlation is good for the middle and high value of the roughness density parameter, but for  
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  the scatter of the points is rather large and can't be explained by the experimental technique differences only. 
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Table 1.  
	Authors
	Year
	Geometry
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	Symbol

	Möbius
	1940
	Tube
	10.0-29.22
	0.3-2.20
	3

	Chu & Streeter
	1949
	Tube
	1.95-7.57
	0.93
	4

	Sams
	1952
	Tube
	2.0-2.3
	0.88-1.37
	9

	Nunner
	1956
	Tube
	16.36
	0.8
	16

	Koch
	1958
	Tube
	9.8-980
	1.0-5.0
	5

	Fedynskii
	1959
	Annulus
	6.67-16.7
	1.0
	10

	Draycott & Lawther
	1961
	Annulus
	2.0
	1.0
	2

	Skupinski
	1961
	Annulus

Tube
	2.0-41.0

22.2-133.4
	1.0

2.0
	6

	Savage & Myers
	1963
	Tube
	3.66-43.72
	1.33-2.67
	13

	Perry & Joubert
	1963
	Wind tunnel
	4.0
	1.0
	19

	Sheriff, Gumley & France
	1963
	Annulus
	2.0-10.0
	1.0
	14

	Gargaud & Paumard
	1964
	Tube

Annulus
	1.8-16.0

10.0-16.0
	1.0-1.67

1.0
	1



	Bettermann
	1966
	Wind tunnel
	2.65-4.18
	1.0
	20

	Massey
	1966
	Annulus
	7.53-30.15
	1.06
	15

	Kjellström & Larson
	1967
	Annulus
	2.02-38.52
	0.086-4.08
	12

	Fuerstein & Rampf
	1969
	Annulus
	2.91-25.04
	0.42-2.50
	8

	Lawn & Hamlin
	1969
	Annulus
	7.61
	1.0
	17

	Watson
	1970
	Annulus
	6.49-7.22
	1.0
	11

	Stephens
	1970
	Annulus
	7.20
	1.0
	18

	Webb, Eckert & Goldstein
	1971
	Tube
	9.70-77.63
	0.97-3.88
	7

	Antonia & Luxton
	1971
	Wind tunnel
	4.0
	1.0
	21

	Antonia & Wood
	1975
	Wind tunnel
	2.0
	1.0
	22

	Dalle Donne & Meyer
	1977
	Annulus
	4.08-61.5
	0.25-2.0
	24

	Pineau, Nguyen, Dickinson & Belanger
	1987
	Wind tunnel
	4.0
	1.0
	23


Using the roughness density parameter model in the form (37, d) and suggesting that 
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 (completely rough regime) one can write (44) for this case as follows
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For the constant value of the parameters 
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. Thus as it follows from the experimental data the shape parameter varies with 
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. To compare the experimental data with the arbitrary value of the shape parameter let us introduce the roughness density parameter in the form 
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, then the roughness density effect model (47) can be rewritten as
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 where 
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In this model the experimental data for various 
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can be plotted together as the graph of the function 
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 as well as in the Dalle Donne & Meyer's model (46). But as it has been established the shape parameter derived from the model (46) isn't a good approximation. 
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-  the solid line. 2D roughness elements data 1-24 has been obtained by authors listed in Table 1

Note that in the common case one can suggest that 
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 is the total length of the frontal and leeward re-circulation zones. The model (46) gives for this parameter the unphysical result 
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. Thus the experimental data of various authors listed in Table 1 has been used to find the right form of 
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where 
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Figure 6 shows 
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calculated on (48-49) - the solid line (1), and the experimental data 1-24 of various authors listed in Table 1 (note, we have used values 
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 from Table 2 of Dalle Donne & Meyer (1977) instead of the original data 1-18). The symbols description is given in the right part of Figure 6 and in Table 1. A fragment of the correlated line is shown in the lower part of Figure 6. One can see that the predicted roughness density effect (the solid line) is in a good agreement with the available experimental data. 

Finally note that formulas (49) are derived for the rough surface composed by the transverse rectangular rods and can't be applied to 2D roughness elements of another form without additionally verification.

3.6. Model of the total length of the frontal and leeward re-circulation zones

Analyzing expression (48) one can find two singular points: 
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, which correspond to two branches of function 
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 one can conclude that these two singular points are located at  
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accordingly.    As we can see from the data shown in Figures 5 there is probably another singular point at 
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Figure 7. а) The normalised total length of the frontal and leeward re-circulation zones, 
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(solid lines), and the normalised mean fluid density as a function of the Dvorak's roughness density parameter (broken lines), calculated for 
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 b)  The roughness density effect on the shift of the mean velocity logarithmic profile,
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: the solid line 1 is calculated according to model (45)-(49),  The solid line 2 is calculated on (47), (49) where
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 was decreased on 10% 

As we can see from Figure 7a the total length has a maximum located in a point
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. According to this the effective mean fluid density has a minimum which may be less then zero. As it follows from (39, b), if  
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 thus it is a singular point for the function 
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. Physically it means that the frontal and leeward re-circulation zones have intersection. As it is well known in this case the skimming flow is realised. In the model (49) this regime is counted statistically and probably with some error. In any case the data over the point 
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in Figure 5 is replaced to the point 
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in Figure 6. Note that correlated line goes throughout this data better in Figure 6 than in Figure 5. 

An unexpected result has been found out in numerical experiment that function 
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 as shown by the solid lines 1 in  Figure 7b calculated for 
[image: image472.wmf]k

d

r

/

=

5

. This result is very sensitive to the variations of the value 
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louses the singular point and looks like solid line 2 in Figure 7. Now we have only experimental data shown in Figure 7 which is not sufficient to confirm this result.  

A restriction for this model can be established if the length scale 
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 found out for the rough surface is compared with the main turbulent length scale 
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 for 2D roughness considered above. If this restriction is broken then it means that the model (48)-(49) also can't be used properly. Supposed that in this case    
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 in the singular point shown in Figure 7,b.    

4 Conclusion

The turbulent boundary layer model has been derived directly from the Navier-Stokes equation. The model is based on the special type of the Navier-Stokes equation transformation and thus this model doesn't need in any closures for the Reynolds stresses.  The model has been testified in the case of the turbulent flow over smooth surface. The roughness density effect model with the transitional regime parameter has been proposed. With this parameter the equivalent sand roughness data obtained by Coleman et. al. (1984) has been corrected in the case of turbulent flow over the surfaces with spherical segments and cones. After correction this data became very close to the original Schlichting's results. 

In the case of 2D roughness elements the experimental data bases published by many authors have been analysed and the re-circulation zones total length parameter has been proposed. The rough surface effect on the turbulent flow is calculated. The agreement between computed outcomes and experimental data in general is good.    
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