УДК 531.9+539.12.01

КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА ПРЕОНОВ, КВАРКОВ И ЛЕПТОНОВ

Трунев Александр Петрович к.ф.-м.н., Ph.D. Директор, A&E Trounev IT Consulting, Торонто, Канада

В работе рассмотрена система уравнений электродинамики сплошной среды молекул, состоящих из преонов, включая кварки и электроны

Ключевые слова: АТОМ, КВАРКИ, НЕЙТРОН, МАГНИТНЫЙ МОМЕНТ, МЕТРИКА, ПРЕОН, ПРОТОН, ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, ЭЛЕКТРОН, ЭЛЕКТРОННЫЕ ОБОЛОЧКИ, ЭНЕРГИЯ СВЯЗИ, ФОТОН, ЯДРО

UDC 531.9+539.12.01

QUANTUM ELECTRODYNAMICS OF PREONS, QUARKS AND LEPTONS

Alexander Trunev Cand.Phys.-Math.Sci., Ph.D. Director, A&E Trounev IT Consulting, Toronto, Canada

In this article we consider the system of equations of electrodynamics of continuous media molecules consisting of preons, including quarks and electrons

Keywords: ATOM, BINDING ENERGY, QUARKS, MAGNETIC MOMENT, METRIC, PREON, PROTON, NEUTRON, NUCLEI, ELECTROMAGNETIC FIELD, ELECTRON, ELECTRON SHELL, PHOTON

Введение

Классическая электродинамика Максвелла-Лоренца основана на представлениях о существовании эфира — тонкой субстанции, проникающей всюду, даже в атомы и электроны, чем и определяются электромагнитные свойства вещества [1-2]. В теории Максвелла [1] предполагается, что законы электростатики обусловлены наличием пористой среды, сквозь которую просачивается невесомый флюид. Положительные и отрицательные заряды в этой модели соответствуют стокам и источникам. Долгое время в теоретической физике не могли совместить эту модель с теорией относительности Эйнштейна [3], так как пористая среда может служить в качестве абсолютной системы отсчета, тогда как в теории относительности предполагается, что все инерциальные системы отсчета равноправны.

В работах Эйнштейна по теории относительности было показано, что если эфир и существует, то его роль является номинальной, а более существенным может быть требование инвариантности уравнений электродинамики относительно преобразований Лоренца [3]. Действительно,

как было установлено на основе измерения поляризации гамма-излучения далеких космических источников, инвариантность уравнений квантовой электродинамики относительно преобразований Лоренца не нарушается вплоть до масштабов порядка $E_{LIV}\approx 0.7\cdot 10^{34}~GeV$ [4]. Это результат является критическим для квантовой теории гравитации, в частности, для теории узлов [5-7], в которой основную роль играет масштаб массы Планка, составляющий около $M_{Pl}\approx 2.4\cdot 10^{18}~GeV$.

С другой стороны, известно, что распределение частиц космических лучей по энергии обрывается на величине около $M_{Matrix} \approx 10^{11}~GeV$ [8-9], что является одним из доказательств теории симуляции [10-11], в которой этим пределом определяется шаг решетки гипотетической модели нашей Вселенной. Наличие решетки масштаба $M_{Matrix} \approx 10^{11}~GeV$ легко можно совместить с гипотезой Максвелла, если предположить, что метрика пространства, на котором задана решетка, имеет сигнатуру (-+++), т.е. это пространство Минковского.

Невесомый флюид, который фигурирует в теории Максвелла [1], можно рассматривать как вязкий газ, подчиняющийся закону фильтрации. В настоящей работе рассмотрена электродинамика плазмы и нейтрального газа, состоящего из молекул преонов. Показано, что некоторые свойства такого газа соответствуют свойствам эфира в электродинамике Максвелла-Лоренца [1-2].

Модель стоков и источников Максвелла была рассмотрена в работе [12], в которой предложена модель структуры кварков и лептонов. Эти частицы рассматривается как сложные системы, состоящие из преонов, обладающих собственной динамикой в пределах заданной метрики, а сами

преоны представляются как составные частицы, включающие нейтральный 0-фермион и заряженный скалярный 0-бозон. Таким образом, вопрос о происхождении электрического заряда переносится на нижестоящий уровень организации материи в недостижимую для эксперимента область масштабов $M_{Matrix} \approx 10^{11}~GeV$.

Основные уравнения модели метрики преонов, адронов и лептонов

Рассмотрим центрально-симметричную метрику вида [12-14]

$$\Psi = \eta_{ij}\omega^{i}\omega^{j} = -dt^{2} + e^{2\nu}dr^{2} + d\theta^{2} + \sigma^{2}(\theta)d\varphi^{2}$$

$$\frac{d^{2}\sigma}{d\theta^{2}} = -\kappa\sigma$$

$$\omega^{1} = dt, \, \omega^{2} = e^{\nu}dr, \, \omega^{3} = d\theta, \, \omega^{4} = \sigma d\varphi$$

$$(1)$$

Здесь $\eta_{ij} = \eta^{ij}$ - метрический тензор пространства Минковского сигнатуры (-+++), $\kappa = const$ - гауссова кривизна квадратичной формы $d\theta^2 + \sigma^2(\theta) d\phi^2$, Функция v = v(r,t) определяется путем решения уравнений Янга-Миллса [14]. Среди всех решений уравнений Янга-Миллса, в случае метрики (1), есть такое, которое выражается через эллиптическую функцию Вейерштрасса [14]. В этом случае уравнения модели приводятся к виду:

$$A_{\tau\tau} = \frac{1}{2} (A^2 - \kappa^2), e^{\nu} = A_{\tau}, \quad \tau = t \pm r + \tau_0$$

$$A = \sqrt[3]{12} \wp(\tau / \sqrt[3]{12}; g_2, g_3),$$

$$b_{11} = -b_{22} = \frac{1}{3} A - \frac{\kappa}{6}, b_{33} = b_{44} = \frac{1}{6} A - \frac{\kappa}{3}, b_{12} = b_{21} = 0.$$
(2)

Здесь обозначено: g_2 , g_3 - инварианты функции Вейерштрасса, причем $g_2 = \kappa^2 \sqrt[3]{12}$; τ_0 - свободный параметр, связанный с выбором начал http://ej.kubagro.ru/2013/05/pdf/48.pdf

Научный журнал КубГАУ, №89(05), 2013 года

координат; $b_{ij} + b_{ji} - 2(\eta^{ij}b_{ij})\eta_{ij} = T_{ij}$ - тензор энергии-импульса материи. Отметим, что в этих обозначениях уравнение Эйнштейна имеет вид

$$b_{ij} + b_{ji} + b\eta_{ij} = R_{ij} \tag{3}$$

 $b = \eta^{ij} b_{ij}; R_{ij}$ - тензор Риччи.

В метрике (2) можно определить дефект решетки типа пузыря. В области пузыря считаем, что $A^2 = \kappa^2$, а во внешней области решение зададим в виде (2), имеем

$$A^{2} = \kappa^{2}, e^{\nu} = 0, \quad |\tau| < \tau_{0}$$

$$A = \sqrt[3]{12} \wp(\tau / \sqrt[3]{12}; g_{2}, g_{3}), e^{\nu} = A_{\tau}, |\tau| > \tau_{0}$$
(4)

На границах пузыря непрерывна функция A и ее первая производная,

$$\kappa = \sqrt[3]{12} \wp(\tau_0 / \sqrt[3]{12}; g_2, g_3), A_\tau = 0, |\tau| = \tau_0$$
 (5)

В частном случае решетки с инвариантами заданными в виде $g_2 = \sqrt[3]{12}$, $g_3 = 1$, находим первый ноль и соответствующее значение параметра метрики $\tau_0 = 3.0449983$, $\kappa = 2.1038034$. Отметим, что метрика во внутренней области пузыря является трехмерной, поскольку не содержит радиальной координаты. Действительно, используя уравнения (1) и (4), находим

$$\Psi = -dt^2 + d\theta^2 + \cos^2(\sqrt{\kappa}\theta + \theta_0)d\varphi^2$$
 (6)

Аналогично строится решение для других корней второго уравнения (5). Все эти решения отличаются только размером пузыря, тогда как значение параметра κ не меняется.

Всякий пузырь можно вывернуть наизнанку, просто изменив на противоположные неравенства (4). В этом случае можно определить метрику во внешней области пузыря, используя решение первого уравнения http://ej.kubagro.ru/2013/05/pdf/48.pdf

(2), так, чтобы метрика внешнего пространства совпала с метрикой нашей Вселенной [13]. Третий тип частиц можно составить как комбинацию двух первых, в результате возникает пузырь, ограниченный оболочкой конечной толщины. Наконец, можно составить многослойную оболочку, состоящую из чередования оболочек конечной толщины и «вакуумных» промежутков, в которых выполняется равенство $A^2 = \kappa^2$. Такого рода структура пространства обладает двумя периодами, зависящими от инвариантов функции Вейерштрасса g_2, g_3 .

Преобразуем метрику (6) к стандартному виду. Для этого умножим обе части выражения (6) на постоянное число $-\kappa$ и введем новые переменные, отличающиеся от старых переменных на постоянный множитель $\sqrt{\kappa}$, в результате находим

$$\Psi \to \Psi_1 = dt^2 - d\theta^2 - \sin^2\theta d\phi^2 \tag{7}$$

Метрика (7) использовалась для моделирования структуры преонов, кварков и лептонов [12], барионов [15], а также атомных ядер [16-18]. Учитывая экспериментальные данные [4], можно предположить, что метрика (1) описывает структуру пространства-времени при наличии калибровочных полей типа Янга-Миллса вплоть до масштабов порядка $E_{LIV} \approx 0.7 \cdot 10^{34} \; GeV$. Следовательно, эффекты квантовой гравитации сводятся к описанию метрики пузырей, которая квантуется в силу периодичности функции Вейерштрасса. Этот факт был использован для обоснования квантования электрического заряда [12].

Наконец, заметим, что параметр плотности энергии изменяется скачком при переходе из внутренней области пузыря в оболочку и во внешнюю область. Например, в приведенном выше решении $\kappa = 2.1038034$

во внутренней области пузыря, в оболочке $\kappa=1$ и во внешней области $\kappa=\lambda^2$, где параметр λ характеризует скорость расширения нашей Вселенной [13].

Динамика преонов

Для описания динамики преонов во внутренней области пузыря с метрикой вида (7) рассмотрим систему уравнений Дирака во внешнем поле Янга-Миллса [12]. Отметим, что согласно (2) в метрике (7) тензор энергии импульса является постоянным. Следовательно, будем предполагать, что поле Янга-Миллса во внутренней области пузыря сводится к некоторой совокупности констант. Кроме того, будем учитывать электромагнитное поле, которое генерируют частицы. Используя результаты работы [19], преобразуем уравнение Дирака к криволинейным координатам (7). Имеем систему уравнений

$$i\gamma^{\mu}(\nabla_{\mu} + iq_{ab}A_{\mu}^{b})\psi_{a} = m_{ab}\psi_{a} \tag{8}$$

Здесь обозначено γ^{μ} , q_{ab} , A_{μ}^{b} , ψ_{a} , m_{ab} - матрицы Дирака, параметры взаимодействия, векторный потенциал, волновая функция и эффективная масса поля преона a входящего в состав частицы b соответственно. Матрицы Дирака в метрике (7) имеют вид

$$\gamma^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad \gamma^{\varphi} = \begin{pmatrix} 0 & 0 & 0 & -ie^{-i\varphi} \\ 0 & 0 & ie^{i\varphi} & 0 \\ 0 & ie^{-i\varphi} & 0 & 0 \\ -ie^{i\varphi} & 0 & 0 & 0 \end{pmatrix}$$

Научный журнал КубГАУ, №89(05), 2013 года

$$\gamma^{\theta} = \begin{pmatrix} 0 & 0 & -\sin\theta & e^{-i\varphi}\cos\theta \\ 0 & 0 & e^{i\varphi}\cos\theta & \sin\theta \\ \sin\theta & -e^{-i\varphi}\cos\theta & 0 & 0 \\ -e^{i\varphi}\cos\theta & -\sin\theta & 0 & 0 \end{pmatrix}$$

В этих обозначениях оператор Дирака в метрике (7) можно представить в форме

$$\gamma^{\mu}\nabla_{\mu} = \gamma^{0}\partial_{t} + \gamma^{\theta}\partial_{\theta} + \frac{\gamma^{\theta}}{\sin\theta}\partial_{\varphi}$$

Поскольку преоны обладают электрическим зарядом, они генерируют электромагнитное поле, посредством которого взаимодействуют друг с другом. Для описания этого взаимодействия используем уравнения квантовой электродинамики в форме

$$e^2 q_{ab} \overline{\psi}_a \gamma^{\mu} \psi_a = (\partial_t^2 - \nabla^2) A_e^{\mu} \tag{9}$$

Здесь $e^2 = 0.0072973525698(24)$ - постоянная тонкой структуры, $\overline{\psi}_a = \psi_a^+ \gamma^0, \psi_a^+$ - сопряженный (по Эрмиту) вектор. Таким образом, предполагаем, что токи и заряды суммируются, создавая коллективное поле, с которым частицы взаимодействуют в соответствии с уравнениями (8).

Для понижения порядка системы представим решение уравнений (8)-(9) в форме

$$\psi_{a} = e^{-i\omega t + iL\varphi} \begin{pmatrix} f_{1}(\theta) \\ f_{2}(\theta)e^{i\varphi} \\ if_{3}(\theta) \\ if_{4}(\theta)e^{i\varphi} \end{pmatrix}_{a}$$

$$(10)$$

Здесь L, ω - проекция углового момента на выделенную ось и энергия системы соответственно. Система уравнений Дирака для случая представления решения в форме (10), приводится к виду,

$$f_{1}' = (L + q_{ab}A_{b}\sin\theta)(f_{1}\cot\theta + f_{2}) + f_{2} + (m_{ab} + \omega - q_{ab}\Phi_{b})(f_{3}\sin\theta - f_{4}\cos\theta)$$

$$f_{2}' = (L + q_{ab}A_{b}\sin\theta)(f_{1} - f_{2}\cot\theta) - f_{2}\cot\theta - (m_{ab} + \omega - q_{ab}\Phi_{b})(f_{3}\cos\theta + f_{4}\sin\theta)$$

$$f_{3}' = (m_{ab} - \omega + q_{ab}\Phi_{b})(f_{1}\sin\theta - f_{2}\cos\theta) + (L + q_{ab}A_{b}\sin\theta)(f_{3}\cot\theta + f_{4}) + f_{4}$$

$$f_{4}' = -(m_{ab} - \omega + q_{ab}\Phi_{b})(f_{1}\cos\theta + f_{2}\sin\theta) + (L + q_{ab}A_{b}\sin\theta)(f_{3} - f_{4}\cot\theta) - f_{4}\cot\theta$$
(11)

Здесь предполагается, что потенциал является суммой потенциалов электромагнитного поля и поля Янга-Миллса:

$$A_b = A_e + A_{YM}, \Phi_b = \Phi_e + \Phi_{YM}$$

Отметим, что масса и заряд являются индивидуальными для каждой частицы, а момент и энергия всей системы выбираются из условия образования стоячих волн вдоль меридиональной координаты. Вычисляя ток в левой части уравнения (9) и оператор набла в правой части, находим уравнения, описывающие электродинамическую часть потенциала

$$e^{2}q_{ab}\overline{\psi}_{a}\gamma^{0}\psi_{a} = \alpha q_{ab}\left(\sum_{i=1}^{4}f_{i}^{2}\right)_{a} = -\Phi_{e}'' - \Phi_{e}'\cot\theta, \qquad (12)$$

$$e^{2}q_{ab}\overline{\psi}_{a}\gamma^{\varphi}\psi_{a} = 2\alpha q_{ab}\left(f_{1}f_{4} - f_{2}f_{3}\right)_{a} = -A_{e}'' - A_{e}'\cot\theta + \frac{A_{e}}{\sin^{2}\theta}, \qquad (\overline{\psi}_{a}\gamma^{\theta}\psi_{a} = 0.$$

Здесь по индексу *а* осуществляется суммирование по всем преонам, входящим в систему. Таким образом, в случае кварков и электронов, состоящих из трех преонов, задача сводится к решению системы из 14 обыкновенных дифференциальных уравнений.

Как известно, электромагнитные свойства элементарных частиц характеризуются электрическим зарядом и магнитным моментом. Поэтому параметры поля Янга-Миллса, фигурирующие в уравнениях (11), должны быть связаны с величиной заряда и магнитного момента системы преонов, которые определяются следующим образом

$$Q_{b} = \int dV q_{ab} \overline{\psi}_{a} \gamma^{0} \psi_{a} = 4\pi \int_{0}^{\pi/2} d\theta \sin \theta q_{ab} \left(\sum_{i=1}^{4} f_{i}^{2} \right)_{a}$$

$$\mu_{b} = \frac{1}{2} \int dV [\mathbf{r} \times \mathbf{j}]_{z} = 2\pi \mu_{q} \int_{0}^{\pi/2} d\theta \sin^{2} \theta q_{ab} \overline{\psi}_{a} \gamma^{\varphi} \psi_{a} = 4\pi \mu_{preon} \int_{0}^{\pi/2} d\theta \sin^{2} \theta \sum_{a} q_{ab} (f_{1} f_{4} - f_{2} f_{3})_{a}$$

$$(13)$$

Здесь масштаб магнитного момента преонов выбирается путем согласования магнитного момента электрона с теоретической величиной, определяемой из второго уравнения (13). Этот масштаб связан с масштабом массы обычным соотношением $\mu_{preon}=e/2m_{preon}=\mu_{B}m_{e}/m_{preon}$, где μ_{B},m_{e} - магнетон Бора и масса электрона соответственно.

Модель кварков и лептонов

Решение системы уравнений (11)-(12) с нулевым векторным потенциалом Янга-Миллса можно получить в виде ряда по степеням малого параметра $e^2 \approx 0.00729735257$. Для системы кварков основное состояние с нулевым моментом представляется в стандартном виде:

$$L = 0, f_1 = f_{ab}, f_2 = 0, f_3 = g_{ab} \cos \theta, f_4 = g_{ab} \sin \theta$$
 (14)

В случае (14) система уравнений (11) с нулевым векторным потенциалом приводится к виду:

$$2g_{ab} + (m_{ab} - \omega_{ab})f_{ab} = 0, \,\omega_{ab} = -m_{ab}$$
 (15)

Вычисляя компоненты 4-вектора тока, и используя первое условие нормировки (13), находим

$$j^{0} = f_{ab}^{2} + g_{ab}^{2} = (1 + m_{ab}^{2}) f_{ab}^{2},$$

$$j^{\varphi} = 2 f_{ab} g_{ab} \sin \theta = -2 m_{ab} f_{ab}^{2} \sin \theta,$$

$$4\pi j^{0} = 1, f_{ab}^{2} = \frac{1}{4\pi (1 + m_{ab}^{2})}$$
(16)

Используем полученные результаты для вычисления магнитных моментов электрона и кварков. Общие свойства исследуемых частиц представлены в таблице 1. С учетом (14)-(15), находим из второго уравнения (13) выражение магнитного момента

$$\mu_b / \mu_{preon} = -\sum_a \frac{2m_{ab}q_{ab}}{3(1+m_{ab}^2)} S_{ab}. \tag{17}$$

Здесь S_{ab} - собственное значение оператора спина равное ± 1 в зависимости от состояния системы — последняя колонка в таблице 1 (величина проекции спина равная ½ учитывается в выражении тока). Как известно, магнитные моменты кварков могли бы давать вклад в магнитные моменты барионов [20]. Однако при тех значениях массы легких кварков, которые приведены в базах данных элементарных частиц [23-24], этот вклад может на три порядка превышать наблюдаемые магнитные моменты протона и нейтрона. Чтобы исключить такую возможность, положим, что магнитные моменты кварков точно равны нулю. В этих предположениях находим следующие уравнения, связывающие магнитные моменты и массы частиц:

$$\frac{\mu_{u}}{\mu_{preon}} = -\frac{2m_{\alpha}}{9(1+m_{\alpha}^{2})} + \frac{4m_{\beta}}{9(1+m_{\beta}^{2})} + \frac{2m_{\delta}}{9(1+m_{\delta}^{2})} = 0;$$

$$\frac{\mu_{d}}{\mu_{preon}} = \frac{8m_{\beta}}{9(1+m_{\beta}^{2})} - \frac{2m_{\delta}}{9(1+m_{\delta}^{2})} = 0;$$

$$m_{u} = m_{\alpha} + m_{\beta} + m_{\delta}; m_{d} = 2m_{\beta} + m_{\delta}$$
(18)

Система уравнений (18) содержит 4 уравнения и 5 неизвестных, поэтому, задавая массу любого преона или кварка как параметр, можно определить массу четырех остальных частиц. На рис. 1 представлены зависимости массы d кварка и энергии преонов от массы u кварка. Отметим, что отношение масс двух типов кварков m_u / m_d принимает в модели (18) семь значений в диапазоне $20 < m_u < 1000$.

Таблица 1. Свойства преонов и составных частиц [21-22]

Частица	Символ	Спин	Заряд	Состав	Состояние
Преон	α	1/2	1/3		
Преон	β	1/2	-2/3		
Преон	δ	1/2	1/3		
Антидипреон		0	1/3	$\overline{\beta}\overline{\delta}$	$\uparrow\downarrow$
Антидипреон		0	-2/3	$\overline{lpha}\overline{\delta}$	$\uparrow\downarrow$
Антидипреон		0	1/3	$\overline{\alpha}\overline{\beta}$	↑↓
Кварк	u	1/2	2/3	$\alpha \overline{\beta} \overline{\delta}$	$\uparrow\downarrow\uparrow$
Кварк	d	1/2	-1/3	$\beta \overline{\beta} \overline{\delta}$	$\uparrow\downarrow\uparrow$
Кварк	S	1/2	-1/3	$\alpha \overline{\alpha} \overline{\delta}$	$\uparrow\downarrow\uparrow$
Электрон	e ⁻	1/2	-1	ββδ	$\uparrow \uparrow \downarrow$
Нейтрино	$\nu_{\rm e}$	1/2	0	αβδ	$\uparrow \uparrow \downarrow$

Модель (18) позволяет определить численные значения отношения масс кварков – таблица 2. В частности, для $m_{\mu} = 100$ находим 7 значений

$$m_d / m_u = 0.0001; 0.6; 1; 1.588; 1.714; 1.8; 2$$
 (19)

Известно, что диапазон разброса массы легких кварков довольно велик [24], а наиболее распространенным приближением в моделях LQCD является равенство масс легких кварков и и d. Поэтому результаты (19), с одной стороны, согласуются с представлениями о свойствах легких кварков [24], а с другой стороны, множество значений свидетельствует, что существует спектр масс кварков. Однако, если в модель (18) добавить уравнения, описывающие странный кварк, то полученная в результате система уравнений не имеет решений. Это означает, что преоны входят в состав странного кварка с иной массой, чем в состав легких кварков и и d. Этот состав можно определить из системы уравнений

$$\frac{\mu_{s}}{\mu_{preon}} = \frac{4m_{\alpha}}{9(1+m_{\alpha}^{2})} - \frac{2m_{\delta}}{9(1+m_{\delta}^{2})} = 0;$$

$$m_{s} = 2m_{\alpha} + m_{\delta}$$

Соответствующие решения приведены на рис. 1. Аналогичные решения можно построить для верхнего кварка и очарованного кварка.

Рассмотрим структуру лептонов. Известно, что нейтрино обладает нулевой массой и нулевым магнитным моментом, тогда как масса и магнитный момент электрона отличны от нуля, следовательно

$$\frac{\mu_{e}}{\mu_{preon}} = -\frac{m_{preon}}{m_{e}} = \frac{8m_{\beta}}{9(1+m_{\beta}^{2})} + \frac{2m_{\delta}}{9(1+m_{\delta}^{2})};$$

$$\frac{\mu_{v}}{\mu_{preon}} = -\frac{2m_{\alpha}}{9(1+m_{\alpha}^{2})} + \frac{4m_{\beta}}{9(1+m_{\beta}^{2})} + \frac{2m_{\delta}}{9(1+m_{\delta}^{2})} = 0;$$

$$m_{e} = 2m_{\beta} + m_{\delta}; \quad m_{v} = m_{\alpha} + m_{\beta} + m_{\delta} = 0$$
(20)

Отметим, что система (20), как и аналогичная система (18), содержит 4 уравнения и 5 неизвестных. В этом случае можно в качестве независимого параметра выбрать массу электрона. На рис. 2 представлены зависимости энергии преонов и магнитного момента электрона от массы электрона. Эти http://ej.kubagro.ru/2013/05/pdf/48.pdf

зависимости являются однозначными только в области параметров $0.16 < m_e < 0.94$, т. е. в окрестности наблюдаемой массы электрона, выраженной в МэВ.

В таблице 3 приведены численные значения параметров модели (20) в зависимости от массы электрона, включая, известное из эксперимента значение $m_e = 0.51099892 MeV$.

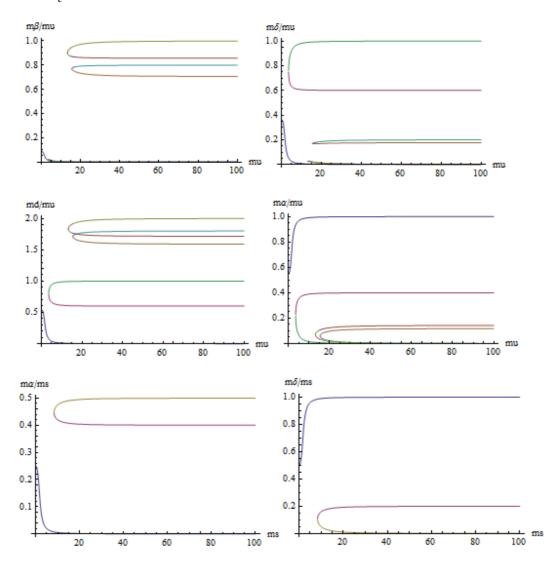


Рис. 1. Зависимость массы преонов и d-кварка от массы u-кварка и зависимость массы преонов в составе s-кварка от массы s-кварка.

Таблица 2. Зависимость массы преонов и d кварка от массы u кварка (указаны все возможные значения при заданной массе u кварка)

mu	mα/mu	mβ/mu		
100	{0.9999166650,	{0.00001666643508,		
	0.3998999619, 0.0001500450281,	0.00004165176757, 0.00002500203217,		
	0.1169761784, 0.1422042624,	0.7068448462, 0.8573282157,		
	0.0007543645590, 0.0006027242989}	0.7997725579, 0.9989962701}		
1000	{0.9999991667, 0.3999990000,	{1.666666435 × 10 ⁻⁷ ,		
	1.500004500×10 ⁻⁶ , 0.1176403917,	$4.166651765 \times 10^{-7}$, $2.500002031 \times 10^{-7}$,		
	0.1428506426, 7.500431301×10 ⁻⁶ ,	0.7058919367, 0.8571446907,		
	6.000270024×10 ⁻⁶ }	0.7999977498, 0.9999899996}		
mu	mδ/mu	md/mu		
mu 100	m∂/mu {0.00006666851820,	md/mu {0.0001000013884, 0.6001416898,		
	'	'		
	{0.00006666851820,	{0.0001000013884, 0.6001416898,		
	{0.00006666851820, 0.6000583863, 0.9998249529,	{0.0001000013884, 0.6001416898, 0.9998749570, 1.589868668,		
	{0.00006666851820, 0.6000583863, 0.9998249529, 0.1761789754, 0.0004675219681,	{0.0001000013884, 0.6001416898, 0.9998749570, 1.589868668,		
100	{0.00006666851820, 0.6000583863, 0.9998249529, 0.1761789754, 0.0004675219681, 0.1994730776, 0.0004010055823}	{0.0001000013884, 0.6001416898, 0.9998749570, 1.589868668, 1.715123953, 1.799018193, 1.998393546}		
100	{0.00006666851820, 0.6000583863, 0.9998249529, 0.1761789754, 0.0004675219681, 0.1994730776, 0.0004010055823} {6.666668519×10 ⁻⁷ ,	{0.0001000013884, 0.6001416898, 0.9998749570, 1.589868668, 1.715123953, 1.799018193, 1.998393546} {1.000000139×10 ⁻⁶ , 0.6000014167,		

Таблица 3. Зависимость массы преонов и магнитного момента электрона от массы электрона.

me	mα	mβ	mδ	μ e/ μ preon	mpreon	$\mu \mathrm{e}/\mu \mathrm{B}$
0.210999	-0.920741	-0.320505	1.63048	-0.920741	0.0676262	-1.
0.310999	-1.00546	-0.319336	1.69992	-1.00546	0.0993132	-1.
0.410999	-1.08633	-0.316866	1.76165	-1.08633	0.130231	-1.
0.510999	-1.16527	-0.313447	1.81955	-1.16527	0.160171	-1.
0.610999	-1.24342	-0.3093	1.87584	-1.24342	0.188982	-1.
0.710999	-1.32143	-0.304583	1.93186	-1.32143	0.216558	-1.
0.810999	-1.39973	-0.299421	1.98845	-1.39973	0.24283	-1.

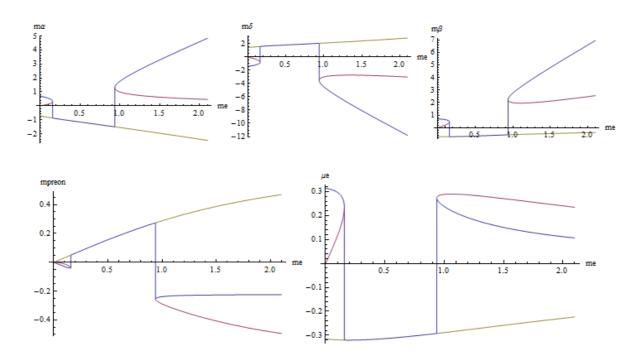


Рис. 2. Зависимость массы преонов и магнитного момента электрона от массы электрона.

Наконец, заметим, что согласно экспериментальным данным [25], кварки являются точечными частицами вплоть до масштаба порядка 4 ТэВ. Тем не менее, очевидно, что у кварков и электронов должна быть внутренняя структура, так как только в этом случае достигается симметрия электронных и ядерных оболочек [12].

Структура преонов

В представленной выше модели кварков и лептонов предполагается, что собственный магнитный момент преонов равен нулю, а их вклад в магнитный момент электрона обусловлен только наличием компоненты тока j^{φ} в основном состоянии согласно второму уравнению (16). Это предположение, означает, что преоны, в свою очередь, являются составными http://ej.kubagro.ru/2013/05/pdf/48.pdf

частицами, которые, согласно нашей гипотезе, включают в себя безмассовый 0-фермион, обладающий спином ½ и скалярный 0-бозон, обладающий дробным зарядом. Косвенным подтверждением этой гипотезы может служить тот факт, что собственные магнитные моменты легких кварков равны нулю или очень малы, по сравнению с магнетоном Бора, поэтому вклад преонов в магнитный момент кварков также близок к нулю.

Поместим скалярный заряд [26] и один фермион в пузырь, тем самым мы полностью определим структуру преона. В метрике (1)-(2) плотность энергии вакуума зависит от константы κ . Наличие заряда во внутренней области пузыря означает, что наружная стенка пузыря радиуса $r=r_b$ имеет потенциал $\Phi=\Phi_b$ относительно бесконечно удаленной точки. Тогда электростатический потенциал во внешней области имеет вид $\Phi=\Phi_b r_b/r$, что соответствует кулоновскому потенциалу.

Далее заметим, что радиус любого пузыря определяется масштабом au_0 , зависящим от инвариантов функции Вейерштрасса. Если эти инварианты заданы для всего пространства, то любой масштаб определяется, в силу периодичности функции Вейерштрасса, как кратный основному масштабу au_0 . Следовательно, потенциал в общем случае имеет вид

$$\Phi(r) = \frac{\Phi_b(\kappa)n\,\tau_0}{r} = \frac{nq_0}{r} \tag{21}$$

Здесь $q_0 = \Phi_b(\kappa)\tau_0$ — масштаб заряда. Таким образом, мы доказали, что скалярный заряд, помещенный в пузырь, квантуется кратно некоторому основному заряду. Чтобы определить этот заряд, рассмотрим связь между объемным и поверхностным зарядом в метрике пузыря. Как установлено выше для волновой функции преонов в основном состоянии, плотность является постоянной во внутренней области пузыря вплоть до границы. Это http://ej.kubagro.ru/2013/05/pdf/48.pdf

утверждение справедливо также и для скалярной волновой функции, следовательно, имеем

$$\frac{4}{3}\pi(n\tau_0)^3\rho_0 = q, 4\pi(n\tau_0)^2\rho_0 = q_1$$

Отсюда находим, что заряд на поверхности пузыря связан с зарядом в его внутренней области соотношением: $q=n\, au_0q_1\,/\,3$. С другой стороны, объемный заряд входит в выражение кулоновского потенциала (21). Отсюда находим, что $q_0= au_0q_1\,/\,3$, поэтому выражение (21) принимает вид

$$\Phi(r) = \frac{\Phi_b(\kappa)n\tau_0}{r} = \frac{n\tau_0 q_1}{3r}$$
(22)

Наконец, полагая, что в природе есть только один масштаб заряда и поэтому, масштаб заряда $au_0 q_1$ соответствует заряду электрона, приходим к соотношению между зарядом электрона и зарядом преона

$$q_{preon} = \pm \frac{ne}{3}, n = 1, 2, 3...$$
 (23)

Знак заряда можно определить из выражения характеристик (2) $\tau = t \pm r + \tau_0$, рассматривая отдельно пузыри с положительной или отрицательной скоростью расширения, как заряды двух разных знаков. Следовательно, заряд преонов обусловлен конечной скорость расширения их оболочки, не согласованной со скоростью расширения окружающего пространства – рис. 3. Такая модель заряда полностью согласуется с теорией Максвелла [1], в которой заряды являются стоками и источниками флюида. В данном случае в качестве флюида выступает калибровочное поле Янга-Миллса, которое в линейном случае распадается на ряд электромагнитных полей [27], а в нелинейном случае описывает метрику пространства согласно уравнению Эйнштейна (3) [28].

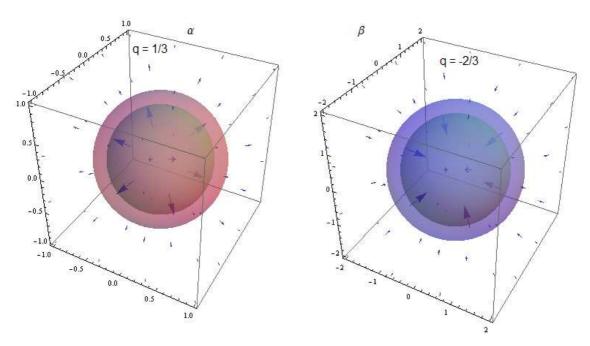


Рис. 3. Преоны альфа и бета отличаются масштабом внутренней области пузыря и направлением скорости движения оболочки.

На первый взгляд, кажется, что аналогичные рассуждения применимы и в отношении зарядов электрона и кварков. Однако гипотезу о связи двух масштабов можно применить только один раз, например, на уровне преонов, для которых дробность заряда обоснована методами квантовой топологии [5-7, 29].

Возникает вопрос, почему у преона не бывает целого заряда, хотя выражение (23) этому не противоречит? В рамках обсуждаемой модели достаточно будет доказать, что существуют заряженные пузыри радиуса au_0 , $2 au_0$, но не существует пузырей радиуса $3 au_0$ и больше. Доказательство сводится к вопросу устойчивости заряженных пузырей. Если пузырь радиуса $3 au_0$ и более неустойчив, то он распадается на более мелкие пузыри радиуса au_0 , $2 au_0$.

Очевидно, что если электрический заряд является безразмерным параметром в выбранной нами системе единиц, то и все величины, входящие в его определение, тоже являются безразмерными величинами. В частности, заряд, входящий в выражение потенциала (22), является безразмерной величиной. Без ограничения общности положим $q_1 = 1$, $\tau_0 = ne/3$, тогда из первого уравнения (5) находим

$$\kappa = \sqrt[3]{12} \wp(ne / 3\sqrt[3]{12}; g_2, g_3) \approx 108 / (ne)^2 + g_2(ne)^2 / 360 \sqrt[3]{1.5} + \dots (24)$$

Здесь использовано разложение функции Вейерштрасса в ряд по степеням аргумента. В первом слагаемом в правой части (24) легко угадывается спектр атома водорода, что позволяет построить теорию атомных спектров без использования стандартной квантовой теории. Достаточно будет предположить, что при поглощении и излучении квантов электромагнитного поля сохраняется полный заряд системы преонов, но при этом заряды отдельных преонов могут изменяться согласно (23). В этом случае энергия всегда поглощается и излучается квантами, а сам механизм излучения связан с неустойчивостью пузырей при n > 2.

Электродинамика газа преонов

Заметим, что преоны сами по себе способны объединяться в структуры, отличные от электронов и кварков. В этом случае они представляют особый вид тонкой материи, которая не может быть зарегистрирована в земных лабораториях. Можно предположить, что существует нейтральный газ преонов, состоящий из равных пропорций альфа, бета и дельта частиц. Такой газ пронизывает видимую материю насквозь, практически с ней не взаимодействуя. В частном случае, когда три частицы - альфа, бета и дельта, образуют нейтрино, можно наблюдать специфические эффекты, которые в http://ej.kubagro.ru/2013/05/pdf/48.pdf

свое время были использованы для обоснования гипотезы о существовании элементарной частицы нейтрино. Во всех остальных случаях этот газ можно рассматривать как тот самый гипотетический эфир, который фигурировал в теории Максвелла [1], Лоренца [2] и других.

Рассмотрим нейтральные молекулы преонов, состоящие из двух частиц с зарядом $\pm 1/3$ и одной частицы с зарядом $\mp 2/3$. Теоретически таких молекул должно быть шесть - $\alpha\alpha\beta$, $\delta\delta\beta$, $\alpha\beta\delta$ + соответствующие античастицы. Таким образом, можно предположить, что существует газ преонов, представляющий собой смесь молекул $\alpha\alpha\beta$, $\delta\delta\beta$, $\alpha\beta\delta$, в некоторой пропорции. Эта смесь может пребывать в различных агрегатных состояниях – твердом, жидком и газообразном. Обычное вещество практически не взаимодействует с тонким веществом преонов, но электромагнитные свойства вакуума, очевидно, определяются наличием материи преонов, так как молекулы преонов могут поляризоваться во внешнем электромагнитном поле.

Можно предположить, что магнитная постоянная μ_0 и электрическая постоянная $\varepsilon_0 = 1/\mu_0 c^2$ - параметры, характеризующие электромагнитные свойства вакуума, имеют отношение к газу молекул преонов. В этом случае стандартные уравнения Максвелла сохраняют одинаковый вид в любой среде, с учетом электрической и магнитной проницаемости, так как обычное вещество прозрачно для газа нейтральных молекул преонов $\alpha\alpha\beta$, $\delta\delta\beta$, $\alpha\beta\delta$.

Рассмотрим другие возможные классические эффекты, обусловленные наличием молекул преонов в окружающем пространстве. Запишем уравнения квантовой электродинамики (8) и (9) для того случая, когда масса частиц, входящих в правую часть уравнения (8), стремится к нулю, а четырехмерный потенциал является постоянным. Тогда уравнение (8) выполняется на любых http://ej.kubagro.ru/2013/05/pdf/48.pdf

Научный журнал КубГАУ, №89(05), 2013 года

решениях, для которых четырехмерный импульс частиц зависит только от четырехмерного потенциала в виде

$$p_{au} = q_a A_u \tag{25}$$

Запишем уравнение (9) в стандартной форме

$$(\partial_t^2 - \nabla^2) A_\mu = \mu_0 j_\mu \tag{26}$$

Учитывая связь импульса и четырехмерного потенциала (25), представим вектор тока в следующем виде

$$j_{\mu} = \sum_{a} q_{a} n_{a} p_{a\mu} / p_{a0} = A_{\mu} \sum_{a} q_{a}^{2} n_{a} / p_{a0} = \frac{A_{\mu}}{A_{0}} \sum_{a} q_{a} n_{a}$$
 (27)

Здесь n_a - число частиц обладающих зарядом q_a в единице объема.

Подставляя выражение тока (27) в уравнение (26), находим окончательно

$$(\partial_t^2 - \nabla^2) A_\mu = \mu_0 A_\mu \sum_a q_a n_a / A_0$$
 (28)

Отметим, что в этом случае уравнение Пуассона сохраняет свой обычный вид. Действительно, используя (28), находим уравнение для скалярного потенциала

$$(\partial_t^2 - \nabla^2) A_0 = \mu_0 A_0 \sum_a q_a n_a / A_0 = \frac{\rho}{\varepsilon_0}$$

Полученное уравнение в случае поля не зависящего от времени сводится к уравнению Пуассона

$$\nabla^2 A_0 = -\frac{\rho}{\varepsilon_0}$$

Следовательно, мы показали, что классическое уравнение Пуассона выполняется и при наличии свободных зарядов преонов при условии выполнения уравнения (25).

Уравнение для векторного потенциала имеет вид

$$(\partial_t^2 - \nabla^2)\mathbf{A} = -m_{eff}^2 \mathbf{A}, \quad m_{eff}^2 = -\mu_0 \sum_a q_a n_a / A_0$$
 (29)

Таким образом, одним из наблюдаемых следствий модели является возникновение эффективной массы у векторного поля, описывающего электромагнитное поле при наличии свободных зарядов преонов. В случае нейтральных молекул эффективная масса равна нулю, поэтому векторный потенциал удовлетворяет волновому уравнению, описывающему распространение электромагнитных волн

$$(\partial_t^2 - \nabla^2)\mathbf{A} = 0$$
, $m_{eff}^2 = -\mu_0 \sum_a q_a n_a / A_0 = 0$

Как известно, Максвелл предполагал, что свойства эфира похожи на свойства поэтому В мировом твердого тела, пространстве распространяться поперечные электромагнитные [1]. В волны действительности, однако, это требование является излишним, так как векторный потенциал описывает поперечные волны. Физический смысл векторного потенциала в масштабе преонов можно установить на основе уравнения (25). Очевидно, что это уравнение можно рассматривать как определение векторного потенциала через обобщенный импульс частиц среды, состоящей из преонов. Отметим, что в классической механике скорость массивных частиц определяется через обобщенный импульс в виде

$$m\mathbf{v} = \mathbf{p} - q\mathbf{A}$$

В случае частиц с нулевой массой отсюда следует уравнение (25). Использованная нами гипотеза (27) позволяет выразить ток носителей заряда нулевой массы и связать его с векторным потенциалом. Само требование нулевой массы носителей электричества согласуется с теорией Максвелла, в которой предполагается, что электрический флюид не обладает инерцией.

Потребуем, чтобы масса векторного поля в правой части уравнения первого уравнения (29) была постоянной. Это выполняется в том случае, если поле скалярного потенциала также является массивным. Действительно, в этом случае, имеем

$$(\partial_t^2 - \nabla^2) A_0 = -m_{eff}^2 A_0 = \mu_0 \sum_a q_a n_a$$
 (30)

Отсюда находим, что масса скалярных частиц равна массе векторных частиц. Следовательно, при взаимодействии электромагнитного поля с системой преонов с ненулевым суммарным зарядом могут возникать массивные скалярные и векторные частицы. Описанный механизм возникновения массы отличается от известного механизма Хигса, связанного со спонтанным нарушением симметрии, для которого осуществляется поиск подходящего скалярного бозона [30].

Используя уравнение (30), находим, что плотность заряда также удовлетворяет волновому уравнению

$$(\partial_t^2 - \nabla^2)\rho = -m_{eff}^2 \rho, \quad \rho = \sum_a q_a n_a$$
 (31)

Уравнение (31) было выведено в нашей работе [31]. Было показано, что это уравнение может быть использовано для моделирования уровней энергии многоэлектронных атомов [32]. Гипотеза преонов позволяет построить еще одно доказательство справедливости уравнения (31), а также создать единую теорию атомных и ядерных оболочек [12].

Учитывая, что в обсуждаемой модели кварки и лептоны состоят из преонов взаимодействующих через посредство электромагнитного поля в метрике типа (7), можно утверждать, что часть массы кварков и лептонов возникает как следствие электромагнитного взаимодействия преонов. Для этого достаточно, чтобы выполнялось уравнение (25), и гипотеза (27). Тогда http://ej.kubagro.ru/2013/05/pdf/48.pdf

в пузыре возникает массивное векторное и массивное скалярное поле, масса которого определяется из второго уравнения (29). При этом масса нейтральных частиц — нейтрино, равна нулю в полном соответствии с известными экспериментальными данными.

Одним из аргументов в пользу указанного механизма возникновения массы может служить электромагнитное расщепление масс барионов, принадлежащих одному октету или декуплету, что нашло свое объяснение в кварковой модели [33].

Кластеры молекул преонов

Одним из приложений модели преонов является обычный атом, состоящий из ядра и электронных оболочек. С точки зрения теории преонов атом является макроскопическим образованием - кластером, состоящим из большого числа частиц. Действительно, ядро атома состоит из 9(N+Z) частиц преонов, а электронная оболочка из 3Z частиц, здесь N, Z число нейтронов и протонов соответственно. Самый легкий изотоп атома водорода содержит 12 преонов. Любой атом состоит из двух вложенных пузырей, один из которых содержит ядро, а другой ограничивает электронные оболочки.

В природе существует закон, позволяющий преонам объединяться в системы по три частицы, которые соответствуют электронам, кваркам и другим элементарным частицам, а также нейтральным молекулам преонов. В атомах преоны образуют ферми-газ по следующей схеме [12]:

- 1) каждый нуклон в ядре диссоциирует на отдельные кварки, которые распадаются на преоны;
- 2) преоны каждого типа образуют ферми-газ, обладающий химическим потенциалом как у релятивистских частиц;

- 3) при диссоциации масса нуклона расходуется на возбуждение кинетической энергии преонов и на создание связей между преонами;
- 4) во внутренней области пузыря преоны объединяются в кластеры кварков, электронов, протонов, нейтронов, ядер дейтрона, альфа-частиц и других ядер;
- 5) существует симметрия электронных и ядерных оболочек заключающаяся в последовательности заполнения электронных и ядерных оболочек.

Рассмотрим правило заполнения оболочек преонами [12]: если две частицы обладают энергией E_i каждая, то вероятность того, что третья частица обладающая энергией E_{i+1} образует с ними кластер, пропорциональна величине $-E_{i+1}E_i^{\ 2}$ (знак минус обусловлен тем, что энергия связи является отрицательной, тогда как вероятность является положительной величиной). Поскольку статистика преонов определяется распределением Ферми, то в результате приходим к модели:

$$-E_{i+1}E_i^2 = \frac{KT^3}{\exp[(E_i - \varsigma_q)/T) + 1}$$
 (32)

Здесь \mathcal{G}_q , T, K - энергия, химический потенциал, температура системы и параметр модели соответственно. Все размерные величины в модели (32) имеют размерность МэВ.

На рис. 4 представлена бифуркационная диаграмма модели (32), по которой определяется правило заполнения оболочек. Мы предполагаем, что вся диаграмма в целом описывает ядерные и электронные оболочки. Действительно, как следует из данных, приведенных на рис. 4, существует два типа оболочек, которые соответствуют малой и большой величине параметра K, а также два типа оболочек с малой и большой величиной http://ej.kubagro.ru/2013/05/pdf/48.pdf

отношения энергии к температуре при заданной величине параметра K. Отметим, что модель типа (32), исследованная в работах [34-36], была использована для моделирования хаоса в атомных ядрах [37], а также для обоснования правила заполнения кварковых и преоновых оболочек [12, 17].

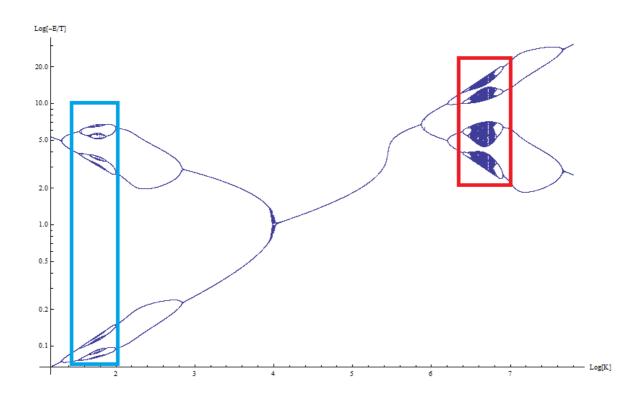


Рис. 4. Бифуркационная диаграмма модели (32) иллюстрирующая правило заполнения оболочек в атомах и в ядрах (оболочки выделены рамкой синего и красного цвета соответственно).

Далее заметим, что в случае адиабатического расширения релятивистского газа фермионов выполняется соотношение $VT^3 = const$. Отсюда находим

$$T = \frac{T_0 r_0}{r} \tag{33}$$

Здесь параметры T_0 , r_0 характеризуют состояние ядра. Следовательно, при заданной энергии среднее число частиц зависит от размера системы как

$$n_i = \frac{n_{i0}}{\exp(m_i r) + 1}, m_i = \frac{E_i - \mu_i}{T_0 r_0}$$
 (34)

Рассмотрим поведение скалярного потенциала заряженных частиц в системе преонов, образующих ядро. Положим в уравнении (30)

$$m_{eff} = \frac{m_{i0}}{\exp(m_i r) + 1}$$
 (35)

Тогда общее решение уравнения (30), зависящее только от радиальной координаты и затухающее на бесконечности, имеет вид

$$A_0(r) = \frac{Q_i}{r} \exp\left(-\frac{m_{i0}r}{\exp(m_i r) + 1}\right)$$
(36)

Выражение (36) на большом удалении от системы сводится либо к кулоновскому потенциалу, либо к потенциалу Юкава:

$$\frac{Q_i}{r} \exp\left(-\frac{m_{i0}r}{\exp(m_i r) + 1}\right) \cong \begin{cases} \frac{Q_i}{r}, m_i > 0\\ \frac{Q_i \exp(-m_{i0}r)}{r}, m_i \leq 0 \end{cases}$$
(37)

Двойственное поведение скалярного потенциала указывает на возможность моделирования в рамках одной модели процессов, которые связывают электронные и ядерные оболочки путем обмена частицами в реакциях бета-распада.

References

1. James Clerk Maxwell. On physical lines of force, 1861; A dynamical theory of the electromagnetic field, 1865; Ether, Encyclopædia Britannica, Ninth Edition (1875–89).

- 2. Lorentz, Hendrik Antoon. The theory of electrons and its applications to the phenomena of light and radiant heat; a course of lectures delivered in Columbia University, New York, in March and April 1906, New York, [NY.]: Columbia University Press.
- 3. Einstein, Albert. On the Electrodynamics of Moving Bodies// Annalen der Physik 17 (10): 891–921. 1905.
- 4. D. Gotz, S. Covino, A. Fernandez-Soto, P. Laurent, Z. Bosnjak. The polarized gammaray burst GRB 061122// arXiv:1303.4186v1 [astro-ph.HE]
- 5. Sundance O. Bilson-Thompson, Fotini Markopoulou, Lee Smolin. Quantum gravity and the standard model// arXiv:hep-th/0603022v2
- 6. Finkelstein R.J. An SLq(2) Extension of the Standard Model// arXiv:1205.1026v3
- 7. Robert J. Finkelstein. The Preon Sector of the SLq(2) (Knot) Model //arXiv:1301.6440v1 [hep-th] 28 Jan 2013
- 8. K. Greizen// Phys.Rev.Lett., 16, 748, 1966.
- 9. G. Zatsepin and V. Kuzmin// JETP Lett., 4,78, 1966.
- 10. Nick Bostrom. Are We Living in a Computer Simulation? // The Philosophical Quarterly, Vol. 53, 211, pp. 243-255, April 2003.
- 11. S.R. Beane, Zohreh Davoudi, and Martin J. Savage. Constraints on the Universe as a Numerical Simulation// arXiv: 1210.1847v1, 4 Oct., 2012.
- 12. Alexander Trunev. Preons dynamics and structure of quarks and leptons// Poly-thematic electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource]. Krasnodar KubGAU, 2013. № 04 (088). Mode of access: http://ej.kubagro.ru/2013/04/pdf/64.pdf
- 13. Trunev AP. Hadrons metrics simulation on the Yang-Mills equations // Poly-thematic electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource]. Krasnodar KubGAU, 2012. № 10 (84). P. 874 887. Mode of access: http://ej.kubagro.ru/2012/10/pdf/68.pdf
- 14. Krivonosov LN, Luk'yanov VA. The Full Decision of Young-Mills Equations for the Central-Symmetric Metrics // Journal of Siberian Federal University, Mathematics & Physics, 2011, 4 (3), 350-362 (in Russian).
- 15. Trunev AP. Dynamics of quarks in the hadrons metrics with application to the baryon structure // Poly-thematic electronic scientific journal of the Kuban State Agrarian http://ej.kubagro.ru/2013/05/pdf/48.pdf

- University (Journal KubGAU) [electronic resource]. Krasnodar KubGAU, 2013. № 01 (085). P. 525 542. Mode of access: http://ej.kubagro.ru/2013/01/pdf/42.pdf
- 16. Trunev AP. The dynamics of quarks in the baryons metric and structure of the nucleus // Poly-thematic power electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource]. Krasnodar KubGAU, 2013. № 01 (85). S. 623 636. Mode of access: http://ej.kubagro.ru/2013/01/pdf/49.pdf
- 17. Trunev AP. Quark dynamics in atomic nuclei and quark shells // Poly-thematic electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource]. Krasnodar KubGAU, 2013. № 02 (86). P. 674 697. Mode of access: http://ej.kubagro.ru/2013/02/pdf/48.pdf
- 18. Trunev AP. Preons shell and atomic structure // Poly-thematic electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource].
 Krasnodar KubGAU, 2013. № 03 (87). P. 795 813. Mode of access: http://ej.kubagro.ru/2013/03/pdf/61.pdf
- 19. V. Dzhunushaliev. Canonical conjugated Dirac equation in a curved space//arXiv:1202.5100, Feb. 25, 2012.
- 20. J.J.J. Kokkedee. The Quark Model. W.A. Benjamin Inc., NY-Amsterdam, 1969.
- 21. Jean-Jacques Dugne, Sverker Fredriksson, Johan Hansson, Enrico Predazzi. Preon Trinity a new model of leptons and quarks// arXiv:hep-ph/9909569v3
- 22. Sverker Fredriksson. Preon Prophecies by the Standard Model// arXiv:hep-ph/0309213v2
- 23. Wolfram Mathematica 9.0/ http://www.wolfram.com/mathematica/
- 24. A.V. Manohar, C.T. Sachrajda. Quark masses// http://pdg.lbl.gov
- 25. The CMS Collaboration. Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at $\sqrt{s} = 7 \, TeV$ // arXiv: 1010.4439v1 [hep-ex], 21 Oct 2010.
- 26. Vladimir Dzhunushaliev and Konstantin G. Zloshchastiev. Singularity-free model of electric charge in physical vacuum: Non-zero spatial extent and mass generation// arXiv:1204.6380v5 [hep-th] 27 Mar 2013
- 27. Bryce S. De Witt. Dynamical Theory of Groups and Fields. Gordon and Breach, NY, 1965.

- 28. Krivonosov LN, Luk'yanov VA. Connection of Young-Mills Equations with Einstein and Maxwell Equations // Journal of Siberian Federal University, Mathematics & Physics, 2009, 2 (4), 432-448 (in Russian).
- 29. Sundance O. Bilson-Thompson. A topological model of composite preons// arXiv:hep-ph/0503213v2.
- 30. The CMS Collaboration. Search for a standard-model-like Higgs boson with a mass of up to 1 TeV at the LHC// arXiv:1304.0213v1 [hep-ex] 31 Mar 2013.
- 31. Trunev AP. Lorentz quantum electrodynamics// Poly-thematic electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource].
 Krasnodar KubGAU, 2012. № 07 (071). Mode of access: http://ej.kubagro.ru/2012/01/pdf/83.pdf
- 32. Mills, Randell L. The Grand Unified Theory of Classical Physics. Blacklight Power, 2008. http://www.blacklightpower.com/theory/bookdownload.shtml
- 33. R.P. Feynman. Photon-Hadron Interactions. W.A. Benjamin Inc., Massachusetts, 1972.
- 34. Volov D.B. The generalized Verhulst-Ricker-Planck dynamics and its relation to the fine-structure constant. Bulletin of Volga Region Transportation. # 5 (29). 82-90. 2011. Д.Б. http://www.sciteclibrary.ru/rus/catalog/pages/11612.html
- 35. D. B. Volov. Specific behavior of one chaotic dynamics near the fine-structure constant// arXiv:1205.6091v1 [nlin.PS]
- 36. D. B. Volov. Modified Klein-Gordon-Fock equations based on one-dimensional chaotic dynamics and groups with broken symmetry//arXiv:1302.3163v1 [math-ph]
- 37. Alexander Trunev. BINDING ENERGY BIFURCATION AND CHAOS IN ATOMIC NUCLEI//Poly-thematic power electronic scientific journal of the Kuban State Agrarian University (Journal KubGAU) [electronic resource]. Krasnodar KubGAU, 2012. № 05 (79). P. 403 413. Mode of access: http://ej.kubagro.ru/2012/05/pdf/28.pdf