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The study of the rough wall turbulence is important in fluid mechanics, in the
atmosphere and ocean and in engineering flows. The rough surface effect on the
turbulent boundary layer has been considered by Nikuradse (1933) Schlichting
(1936, 1960), Bettermann (1966), Dvorak (1969), Simpson (1973), Dirling
(1973), Dalle Donne & Meyer (1977), Jackson (1981), Osaka & Mochizuki
(1989), Raupach (1992) and other.

Nikuradse (1933) established (for sand-roughened pipes), that if the roughness
height significantly exceeds the viscous sublayer thickness, then the mean veloc-
ity profile can be described by the logarithmic function:

H——Ini+c
"k k. s

S

D)

where u is the friction velocity, u, =t /r, t is the wall shear stress, r is the
fluid density, z is the distance from the wall - see Figure 1, k. is the characteris-
tic scale of the sand roughness, k,c, are empirical values. Nikuradse found that
k =04,c, =85 for the completely rough regime. He compared the mean velocity
profile (1) with the law of the wall, derived by him before in 1932 for turbulent
flows in smooth pipes, as follows
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where n is the kinematic viscosity, k =04, ¢, =55 are the logarithmic profile
constants for the hydraulically smooth surface. DU is the shift of the mean ve-
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locity logarithmic profile which can be defined for the turbulent boundary layer
over arough surface as

DU _ 1, uk,
M —klnn +D, (3
where D, » - 30 for the completely rough regime. Nikuradse has shown that the
dimensionless roughness height parameter k.* =u k, /n can be used as an indi-

cator of the rough wall turbulence regime. He proposed to consider three typical
cases:

the hydraulically smooth wall for 0<k. £5, DU =0;
the transitionally rough regime for 5<k_* <70, D, varieswith k_;
the completely rough regime for k_* 3 70, D, » - 30.

Thus, the sand-roughened wall turbulence depends on the dimensionless rough-
ness height (roughness Reynolds number) k.* as has been established by Niku-
radse.

Schlichting (1936), used the Nikuradze's date base and his own experimental re-
sults obtained in the water tunnel of rectangular cross section with the upper
rough wall, proposed the new form of the equation (1) which is well counted
the roughness effect on the turbulent boundary layer by means of the effective
wall location (Dz) and the equivalent sand roughness parameter k_. With this
parameters the mean velocity profile in the turbulent flow over an arbitrary
rough surface can be written in the Nikuradze's form (1) as follows:
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where z =z- Dz (see Figure 1). The effective wall location was defined by
Schlichting as the mean height of the roughness elements (the location of a
"smooth wall that replaces the rough wall in such a manner as to keep the fluid
volume the same"). The value k_ has been measured by Schlichting for several
types of the roughness elements with various shapes, sizes and spacing. The
Schlichting's experiment was re-evaluated by Coleman et. al. (1984) and they
noticed that some Schlichting's data have been obtained in the transitional rough
regime.
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Figure 1: The scheme of the turbulent flow over a rough surface (left), and the
roughness elements are considered in the paper (right): spheres, spherical seg-
ments, conical elements (3D) and transverse rectangular roods (2D)

Clauser (1956) has shown that the shift of the mean velocity profile can be writ-
ten as

DU
U,
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where k, is the characteristic scale of roughness elements and D must be some

function of the roughness geometrical parameters. Hence the equivalent sand
roughness parameter k. =k, expk (D- D,)], where D, » - 30 for sand roughness.

Bettermann (1966) discovered that D is the function of the roughness elements
spacing. He introduced the roughness density parameter for roughness com-
posed of the transverse square bars as the pith-to-height ratio, L, =L/k - see
Figure 1. Bettermann found that in therange 1£L . £5 the variations of D with
the roughness density can be specified by

D=1225InL ; - 17.35

As has been demonstrated by Dvorak (1969), the rough wall effect is well corre-
lated with the roughness density parameter defined as pitch-to-width ratio or the
ratio of total surface area to roughness area, L =L/d. Dvorak developed the

Bettermann's model in the range 468£ L _ £10°, used the data of Schlichting and
other researches, as follows:

112.25InL - 17.35 1£L (£468

D={_2gsinL +595 L, >468 )

Simpson (1973) introduced the roughness density parameter in the case of three-
dimensional (3D) roughness as L's = (N A.)*, where N is the number of sig-

nificant roughness elements per unit area, A is the average frontal area of the
"significant" roughness elements. He suggested the general interpretation of the
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Bettermann-Dvorak correlation (5): two branches (5) exist depending on the
formation or absence of transverse vortices between roughness elements. Simp-
son also showed that the shape of the element is an important parameter.

The model been reported by Dirling (1973) and verified by Grabow & White
(1975), takes into consideration the roughness elements shape parameters. The
Dirling's density parameter isdefinedas L, =(L/k )(A,/ A.)"® where A, is"the
windward wetted surface area". In a case of two-dimensional (2D) roughness the
Dirling's parameter leads to the Bettermann's roughness density parameter. As it
was shown by Sigal & Danberg (1990) the shape parameters effect can be de-
scribed by the similar correlation such equation (5) and that D =2.2 for the two-
dimensional roughness in the range 489£ L  £1325. They also underlined that
the correlation for 2D roughness elements is not the same as for 3D elements.
On the other hand, Kind & Lawrysyn (1992) confirmed that the Bettermann-
Dvorak function D(L ) in the form (5) can be successfully used for the correla-
tion of the experimental data in the aerodynamic experiments with the natural
hoar-frost roughness.

Dalle Donne & Meyer (1977) correlated their data and those of previous re-
searches (19 data bases considered below in section 3.4) used the roughness
density parameter L, =(L- d)/k . They developed the empirical model which
can be applied to the turbulent flows in the annuli and tubes with inner surface
roughened by rectangular ribs.

Osaka & Mochizuki (1989) examined d-type rough wall boundary layer in a
transitional and a fully rough regime. They have shown that in a transitional
rough regime the mean velocity logarithmic profile is confirmed and that the
Karman constant has the same value as for the hydraulically smooth wall flow.

The mean velocity logarithmic profile widely used in the atmospheric turbulence
research is given by (see Monin & Y aglom (1965)):

H:ilnz_ %
u k- z

where z, is the displacement height, z, is the roughness length. Note that z, and
z, are considered often as some adjustment parameters chosen for the best corre-
lation of the local wind profile in the neutral stratified flow with the logarithmic
profile. The model of the displacement height has been considered by Jackson
(1981). The roughness length model was developed by Raupach (1992) and

other. The classification of the experimentally determined roughness length for
various terrain types was given by Wieringa (1992).

The objective of the present work is to develop the model of the turbulent
boundary layer which can be applied to any cases considered above: turbulent
flows over smooth surfaces, in the transitional rough regime and for the fully
developed roughness. The main ideais to derive the model of the turbulent flow
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over a rough surface directly from the Navier-Stokes equation. As shown in sec-
tion 2 the requisite model can be derived from the transformed and averaged
Navier-Stokes equation due to the surface layer transformation introduced by
Trunev & Fomin (1985) in the impingement erosion model and developed by
Trunev (1995, 1996, 1997, 1999, 2000) for the turbulent boundary layer prob-
lem.

2. Turbulent flow model
2.1. Surface layer transformation

The effective wall location was defined by Schlichting (1936) as the mean
height of the roughness elements and in the mathematical form can be written
as:

Dz=r, = L ay (x, y)dxdy (6)

X =y DxDy

where z=r(x,y)is the relief of the rough surface - see Figure 1, L, L, are the
rough wall scalesinthe x,y directions, DxDy = L,L, . In acase of two dimensional

roughness considered by Dvorak (1969) and Simpson (1973) the roughness den-
sity parameter depends on width and pitch of the roughness elements (see Fig-
ure 1): L =L/d. The mean roughness height depends on the height of rough-
nesselementsas r, =ak, /L, where a isthe numerical constant which equals to
unity in this case. The shift of the mean velocity can be presented as a function
of the mean roughness height. Thus using the Bettermann-Dvorak's equation (5)
intherange 468£ L  £10°, we have
DU 1 uk u k, ur

=—In——+D» 25In——- 035InL ( +595=25In—=- 0.35InL ( +595
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In this approach the mean velocity profile in the turbulent flow over a rough sur-
face can be rewritten as follows

Y 1A 03sinL - 045
u ko

If we redefined the main roughness scale then the mean velocity profile takes
the form which is widely used in the atmosphere research:

U_1,2
0k InrO (7)
where Inr, =Inr, - 0.35% InL _ +0.45% » Inr, - 0.14InL _ +0.18. Practically r, »r, for
L.=5and r,» 063, for L, =100. Hence, the logarithmic profile mainly depends

on the mean height of the roughness elements in this range of the roughness
density.
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Let us consider the random function defined as

& 4.4

U(z/r)=;"In" (8)
where r isthe random parameter with the mean value given by

r,= (‘5 rf (r)dr

here f = f (r) is the density of a probability distribution function (roughness
statistic function) normalised on unity:

Q f(dr =1
Both parts of the equation (8) can be averaged with this function as follows:

Y ,,a
kIn0

U(z) = (Ji(z /1) f,(r)dr =kid|nzl- Inr ) f(r)dr =

R

where Inr, = Q In(r) f(r)dr . With this result the mean-squared-value of the ve-
locity fluctuations can be calculated as

du? :¥(‘jU- U)? f (r)dr :u—talnr- Inr,)? f,(r)dr :u—t(<ln2r>- In?r, )
0 ) k 0 ’ ) k ’

Thus, the random function T(z /r) can be used for the mean velocity calculation

as well as for the mean-squared-value of the velocity fluctuations modelling.
Our main idea is that the random function @(z /r) can be calculated on the basis

of a solution of the Navier-Stokes equation due to the surface layer transforma-
tion

U(z/r)= lim i(‘)J(x,y,hl)dxdydz (9)
dVdV

dvV® dVs

where h, =z /r(x,y) is fixed over the integrated region, h, =z /r =const, dV isan
arbitrary volume put in dv =L, L,dz and containing dv, as a whole, dv; is the
subregion in which altitude of the rough surface r(x,y) varies in limits from r
up to r +dr, hence by definition dv, = dvf_(r)dr .

Note, that the surface layer transformation is only a kind of averaging procedure
which conserves the function properties across a boundary layer. The Navier-
Stokes equation can be averaged with the surface layer transformation (9) in-
stead of normal Reynolds averaging method to derive then the equation for the
random function T(z /r). Unfortunately it's impossible to use this method in the

simple form (9), because, for example, in the case of a smooth flat plate r =0.

Therefore we suppose that there is a surface z=nh(x,y,t) (the dynamic roughness
surface) inside the flow domain which can be used for modelling the rough sur-
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face effect on the turbulent boundary layer. Without any limits we can choose a
surface z=h(x,y,t) close to the wall surface z=r(x,y), but not equal to r(x,y).

Let h(x,y,t)=r(x,y)+h(xy,t), where h(xy,t)is the height of the viscous
sublayer over the rough surface. In the turbulent flow the surface
z=h(x,y,t) can be described by random continuous parameters h, h, hy, hy char-
acterising the height, velocity and inclination of the surface elements. Let’s de-
fine the subregion dv, in which the local height of the rough surface r(x,y) var-
lesin limitsfrom r upto r +dr and parameters of the surface z=h(x,y,t) inlim-
itsfrom h upto h+dh, from h upto h+dh ,from h upto h +dh ,
from h up to h+dh , thus dv,=dvf(r,hh,h h)drdhdhdhdh, where
f, = f.(r,h,h,h, k) is the multiple density of a probability distribution function.
Thus in common case the surface layer transformation can be written as follows
(instead of eq. (9))

D‘(zllh,t,r,h,hx,hy,ht)=d\u@r21v$div SH(x, y,h, t)dxdydz (10)
dav

where h =z /h(x,y,t)is fixed over the region of integration, h =z /h=const ,dV
is an arbitrary volume put in dv = L L dz and containing dv, as a whole. Statisti-
cal moment of order m of arandom function ti(z /ht,r,h,h,,h,) isgiven by

0" (z,t) = C)]]m(hl,t,r,h,hx,hy,h)fs(r,h,hx,hy,h)drdhdhxdhydh (11)
The main problem of this method is how to estimate the multiple density of a

probability distribution function f_ = f (r,h,h ,h ,h) ? Nevertheless, for the solu-
tions presented by the logarithmic function we can suppose that

u= i, t,r,hh b h) f(rh b hy by )drdhdh,dh dh, = U(Zilh,r*,h;,h;,h*)

where the parameters with stars can be estimated from the comparison of solu-
tions with experimental data or calculated from some theoretical considerations.
Practically the roughness parameter r, should be given as an input value and all
another parameters can be calculated from the similarity theory considered in
sections 2.6-2.7.

2.2. Input equations

We shall consider the turbulent flow of fluid containing a scalar impurity. Fluid
Is assumed as viscous, heat-conducting, incompressible gas in a rather slow tur-
bulent motion. Thus, the model of the turbulent flow is given by:
N.u=0 (12)
ﬂ—u+(u.N)u #P nNu
It ro
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17T - n ., 1C ~ n .,
—+(u.N)T =—R?T — +(u.N)c =—RN2C
gp FUNT =5 N, gr TUNC=o

where r isthe fluid density, u = (u,v,w) isthe flow velocity vector, n isthe
Kinematics viscosity, p isthe pressure, T isthe temperature, Pr is the Prandtl

number, C isthe mass concentration of an impurity, Sc=n/D isthe Schmidt
number, D is the molecular diffusion coefficient.

Boundary conditions for the flow parameters are set as follows:
z=r(x,y): u=0, T=T, C=C, (13)
z=d,;u=(,00),T=T,C=C,
where T, is the surface temperature, C, is the impurity concentration at the

wall, d, is the boundary layer thickness, U,,T,,C, are the flow velocity the
temperature and the impurity concentration in the distance z =d, respectively.

2.3. Random flow parameter s equations

The nontrivial solutions of the Navier-Stokes equations which may play im-
portant role in the surface layer turbulent flow organisation can be written as
u=u(xy,z/h(x,y,t),t), where z=h(x,y,t) isthe dynamic roughness surface. Due
to the special type of transformation in the form (10) the velocity field, the pres-
sure, the temperature and concentration are transformed as

S=(u,p,T,C)%® S=(T,p,T,C)
The equations for the random functions S(z/h,t,r,h,h,h,,h,) can be derived

from the equations (12) written in the curvilinear coordinate system (x,y,h,t).
Following Pulliam & Steger (1980) the equations (12) are presented in the form:

111—? —(E E)+ (F F)+J—(G G,)+

+J|hQ+h (E- E,)+h (F- F,)[=0 (14)

where J isthe Jacobian, J=h't*0,J*'=ht 0,

aarg ®e ru 9 ®e rv 9 P rw 9
gru gru2+p; g ruv - gruW hh, p-
Grv~ ¢ rwu ~ Crv? +pT ¢r vWW- hh p*
Q=¢ +E=¢ - F=C ,G=¢
Qrw_ Qrwu+ Qrwv+ Qrw\N+p_
CT+* &6 uT = G vT = ¢ wr *
¢ - ¢ - ¢ - ¢ -
eCra e uC g e VC g e WC [/
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Here t,, isthetensor of viscous stress,t, ng::' ﬂ—l::b, m isthe dynamic vis-
k

cosity, k,1=123; h =-Jhh, h,=-Jhh h, =3 W=w-h(h +hu+hyVv),i=x,y,z
In curvilinear coordinate system it is necessary to execute replacements in terms
with gradients:
il T, 1 : T 179
® for j=12; —® ———,
T 1% ‘H X; Th ‘H hfh

Let us consider the special types of solution of transformed equations (14)
which depend only on time and normal variable h as it often suggested in the
turbulent  boundary  layer theory. Thus let's suppose that

ﬂl(E- E,) :ﬂl(F- F,) =0 in the left part of (14). In this case eg. (14) can be
X y

presented in the form

‘HQ

it g G- G NG E- B E- R)]=0 (14)

where parameters with tilde are defined similar to S=(T,p,T,C) asit follows
from (10). In the equation (14') the dissipate terms can be written as

& 0 ¢ e 0 0 e 0 ¢
¢ amg g T, 4G, - ¢
E, =- “E”“y‘“r““xvf F = hg amT T —(1+n2h)1“€ mii z
' henh W, - ni, /he v hgniny\% mv, /hs’ hihe nw -
¢ nPrhT, T ¢ nPrth T, T GhPriTs
E oG YA D¢ o

where T, =qd/Th,

On the other hand to derive the equation (14') one can applied the averaging op-
erator in the form (10) with an arbitrary averaging volume dVv to equation (14)
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to conserve the commutative properties of the averaging operator with the space
and time differential operators. Then one can consider the limit of all terms of
the averaged equation at dv ® dv, . At this step the theorem about two limits of
the continuous function can be used (since the differential operators can be con-
sidered as some limits). Note, if S=(T,p,T,C) is the solution of the transformed
Navier-Stokes equations (14) in any sense, then we have the turbulence model
closures automatically as follows:
lim — m(x y,h,t)u, (x,y,h,t)dxdydz = Gu, +qd,

dvV® dVs

lim — OJ(X y,h,)T(x,y,h,t)dxdydz = UT

dvV® dVs

d\|/I®I’TC1Nd—V (% y,h,1)C(x, y,h,t)dxdydz = ucC
Here 33/2 is the kinetic energy of turbulent fluctuations in the small volume
dv,,d, isthe Kronecker delta: d , =0 for it k, d =1 fori=k

Note, that in this model the Reynolds stress can be calculated as
t$(zt) = ¢r (@ - T)@, - G) +ad, ]f,(r,hh,,h h)drdhdh,dh, dh

Therefore the random function @ =(h,t,r,...) givesthe main contribution in the
non-diagonal components of the Reynolds stress. Now we take it as granted be-
cause we haven't any contradictions. Hence, the first assumption of thistheory is
that the turbulence interaction between the hydrodynamic fields can be de-
scribed with the solutions S=(G,p,T,C) as well as with the solutions
S=(u,p,T,C). The second assumption is that it's possible to neglect longitudinal
and transversal gradients of flow parameters in a comparison with gradients
across a boundary layer, at least for steady turbulent flow. Finally we have the
dynamic equations for random flow parameters as follows:

fw qF _

" N =0 (15)
E-}-WE-}-EE:iil-}- h)ﬂu nnzhﬂ_u nNﬂF
it hYh rhTh h*gh Th h? qh h? Th

Y = 2
£+V_V£:L21(1+n2h2)£_nn2£
it hYh Prh° Yh Th  Prh” fh
E+ﬂﬁ_ ( )‘HC nn‘h ‘HC
it hh Sch®q fh  Sch? fh
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where F =h +hU+h¥; P=p+qg,n=./h+h, W=W- hF,
N =(-h h.-h h,1) (thus the value q included in the turbulent pressure).

The first equation (15) is the continuity equation; the second is the momentum
eguation.

Note, that the parameters of a dynamic roughness in equations (15), are not al-
ready the functions of space variables or time. Really, in virtue of transformation
(10), the values of these parameters are fixed in intervals from r up to r +dr ,
from hup toh+dh, fromh up to h+dh, from h up to h +dnh ,
from h up to h +dh . These values, thus, are considered as the random pa-

rameters, and the law of their distribution in specific intervals is described by a
known function f, = f (r,h,h,,h,.h).

As we can see from the derived equations (15) there are the factors in the higher
derivatives terms, which depend on a distance up to arigid surface. It should be
noted also, that the equation (14) is not in the strong conservation form, as, for
example, it is given by Pulliam & Steger [59]. Therefore the numbers of termsin
square brackets, breaking conservation of this system are chosen in the left part
of equations (14) and (14'). Such allocation of non-divergent terms is stipulated
by the purposes of modelling of the eddy viscosity, which, in our opinion, arises
in a boundary layer from transformation of a tensor of viscous stresses in a
neighbourhood of a dynamic roughness surface. It is obvious in the case of vis-
cous flow over arigid rough surface and is connected with an adhesion of a vis-
cous flow to a rigid surface of any configuration. In the turbulent flow over a
smooth surface the eddy viscosity is simulated by analogy to a more widespread
type of turbulent flows, as in a special case, when r ® 0. Thus the eddy viscos-
ity is connected (mathematically) with transformation of a tensor of viscous
stresses to coordinate mapping which brings rigid surface onto coordinate sur-
face.

For the diffusion equation it is possible to derive the boundary layer model by

the simplified way. Let us suppose that in the last equation (12)

C =C(h(x,Y,zt),t), then we have
C l

- n . C <~ qC -
- N)C- —N?C=-= Nh)=—- D(Nh
ﬂt+(u ) = ‘”t+(ht+u ),”h (Nh)

. °C

e 1€ -
th?

- DN*h
fh

In partial case when h =z/h(x,y,t) thus
Nh =h"*(-hh,,-hh,1); % =-hh'N2h+2h(h'Rh)?,

and therefore the last equation can be written as
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1C W‘HC D

s

it h9h h?

'n C 2Dn2h‘ﬂC DhN? hfC
h? 9h h 9h

This equation can be transformed to the form of the last equation (15). Accord-
ing to definition

C(h t,r,h,h,,h, h)= I|m e cp(h t)dxdydz ,

dved

Using the identity h"*Ni>’h = N(h"*Nh) + h"2Ni*h, and averaging all terms, finally we
have

‘H C DnzhE
h2 Th

1K
- d\!!@ngv d—VOjZDh — d\l(h Nh)dxdy

where DS=L,L,. But the last term is annulled if region DS=L,L, is large
enough (the divergence theorem). Therefore we have an equation

2) 2)
E+WE:E(1+nh )ﬂ S Dnzh ﬂC nz 1 (1+nh )‘”C nnl‘zl‘HC
Mh h fh " Sch Th Th Sch” fh

which is identical to the last equation (15).

2.4. Pressure integral and random flow parameter s equations transformation

In the case of an isothermal incompressible flow the hydrodynamic part of the
eguations (15) can be written as:
TW .
1u W‘ﬂu+ NP _n 1

zz‘ﬂu nnzh‘ﬂu+nN‘|]F
ft hgh rhgh h2%h

L TR TR T
Put N, = (h,,h,,0). Multiplying by a scalar way the second equation (15) on the
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vectors N,N, respectively one can derived the pressure gradient and the equation
for the linear combination of momentum components F as

1P _2nr 1F hr W

fh ~ h Th N2 9t (16)
1F WIF n*hfP_n 9 ,,TF 2nn’hqF
TR TR T el G UL LD T

where N?=1+n’h?. Substituting F from the continuity equation (15" into the

second equation (16) and using the first equation (16) finally we have the closed
nonlinear model:

"W WTW r’hW _n T

.\ ] _ 22 T2 W
Tt h ‘th N?2 qt h? Th

(1+n h )W

(17)

Multiplying the momentum equation (15" on the vector N, = (h, .- h ,0) one can
derived the linear equation:

TY WTY n | ., TY nn?h Y

Tt T T ST e

(18)

where Y =hd- hv.

Note, that W is the contravariant component of the velocity vector associated
with the vertical turbulent movement. Asiit follows from (17-18), W isthe main
parameter in this model describing the non-linear turbulent effect.

2.5. Seady turbulent flow model

W IF
In the case of a steady turbulent flow put 1y _Iw_1

=0 in (16-18) then

Tt It 9t
the pressure gradient across boundary layer can be written as
TP _2nr TF
Th ~ h fh

Having substituted this expression in the second equation (16) and rewritten (17-
18) in the case of a steady turbulent flow one can find
W 12W ~n v 12w

o - 2}, 2
h ﬂhz _h2 ﬂh(1+nh )ﬂhz

(19)

WIE -0 T aenhey

qF
h §h ~ h? qh qh

1h
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WIY _n 1 s 1Y nn’h 1Y
e R ST e e s

The first integrals of the equations (19) are given by
dF _Aexp[-I(h)]  dY _ Aexp[-I(h)] d’W _ Aexpl- 1 (h)]

= = =- 2
dh 1+n%h? ’ dh M+n?h? ' dh? 1+n°h? (20)
h nstants. | = h o Wdh
W EI'EAareS()mECO ants, Ql+n2h2'

Note, that the velocity components are determined as
T=n?(F-h)h +Yh ], 7=n?(F - h)h, - Yh], w=W+hF

hence, used (20) one can derive the velocity gradients equations system written
in the normal form suitable for the numerical integration:
a1 _n’hAe’  n’hAe
dh ~ 1+nh? M+nnz
v _n*hAe’ n?hAe' dv _ Ahe’

dh ~ 1+n*h?  f1epth2 dh ~ 1+nh?

(21)

2.6. Nonlinear model numerical solution

The first equation (19) has been numerically solved in the case of the turbulent
steady flow over a smooth surface with boundary conditions at

h=0 W()=0, dW/dh=-h, dW/dh?=-A, (22)

where A isthe free parameter required to obtain the limited value of the integral

I(h) = —(51Wdz:2 for h® ¥ . This condition was used only to obtain the loga-

rithmic asymptotic of the mean velocity. The physical sense of the parameter A

Is a clear, because this parameter is directly proportional to the normal pressure
gradient on the wall:

TP _2nr TF thUS E :21A1

¢h  h Th’ fh h

h=0

Ei_rst and second boundary conditions (22) are following from the definition of
W.

To minimise the number of the independent random parameters the general so-
lution of the first equation (19) can be written as W =- (h, /n)c,(nh,R), where

http://ej.kubagro.ru/2010/04/pdf/23.pdf



http://ej.kubagro.ru/2010/04/pdf/23.pdf

Hayunsrtit sxypaan KyoI'AY, Ne58(04), 2010 roaa 15

the universal function c, depends on the composition of random parameters
(the dynamic roughness Reynolds number):

__hh
R= n(h? +h?) (23)

and satisfies to the equation
dc d?c

(1+X Z)dx—g,l+(RtC 1+2X) dle =0 (24)
with boundary conditions at
x=0 ¢,0)=0, dc,/dx=1 d’c,/dx’=a (25)

wherex =nh , a is also the free parameter required to obtain the limited value
of theintegral 1(x)at x® ¥ . Note, that (24) can be derived from the first equa-
tion (19). Consequently the integral 1(x) depends on the composition of random
parameters R and can be calculated as

X 1A, d
1R = e VX (26)

The integral (26) has been computed in the range - 25£ R £ 700 together with
(24-25). Fourth-order scaled Runge-Kutta algorithms and the shooting method
have been used to get the numerical solution. Note that for R =0 this problem

has the analytical solution:
c,(x) = 6(1+aarctanx)dx .

Inthis case 1(x) =0, hence one can suggest that function

B(x) = limye, 1 (x)/ R :6%

has alimited valueat x® ¥ . Itispossibleif only a=-2/p, thus
x, 2
c,(x) = Q(l- Barctanx)dx

This solution has been used as the initial position in the shooting method.

The normalized function 1(x)/R is shown in Figure 2,a for the various
R =-0.830.026;0.83,3.32,26.56 - the solid lines 1-5 respectively. As it is shown
the function 1(x) /R issimple and smooth function as arctan(x) .
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Figure 2: @) The normalised function 1 (x) / R computed on equations (24, 26)
for the various R =-0.83,0.026;0.83,3.32;26.56 - the solid lines 1-5 respectively; b)
The normalised integral 1,(R)/ R depending on the dynamic roughness pa-
rameter for R >0

The calculated limited value 1,(R) =lim, I (x,R) isshown in Figure 2,b by the
symbols together with the approximated line
l,(R) /R =138- l13arctan[0.4In(1+ R )], (27)
i 1, 0£R £100
9711 (15R - 150)10°%, 100< R, £ 700

To ssimplifier the numerical modelling of the mean velocity profile over a rough
surface the function 1(x,R) has been approximated as
|,R) @s |, (R)arctan[(0.4+ 0.02R ¥ )x] (28)

where 1,(R) is given by (27).

Finally note that for the negative value of the parameter R intherange R <-25
the numerical procedure becomes unstable one. In this case the value
I,(R)=lim,, I(x,R) increases considerably with the small decreasing of the

dynamic roughness parameter R . Since this branch of the integral 1,(R) will
not be used in our analysis, therefore data for the negative value R <0 is not
presented in Figure 2, b and has been neglected in approximation formula (27).

2.7. Mean velocity logarithmic profile in turbulent flow over smooth surface
The turbulent boundary layer over a smooth surface is the best example for the
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theoretical consideration and modelling according to the model (21). In this case
the streamwise velocity gradient can be written in the standard form using the
inner layer variables z* =z, /n, u* =0/u,, and boundary conditions for the

mean velocity gradient:
az®o0 du'/dZ ® 1
aze®y du'/dZ® 1/kz,

where k is the Karman constant. As it was suggested in subsection 2.1 we have
used parameters with stars instead of random parameters. Finally we have got
for the streamwise velocity gradient

du* Ae’' glo”!
+ = + +\2 +
dz' 1+(Z' /1) Kl 1+ (21 )

(29)

where A=1-¢e°/kl *, 1 *=huy, /nn.

The first term in the right part (29) has the essential value mainly close to the
wall (if At 0) and the second one gives the main contribution in the logarithmic
layer. To derive the mean velocity profile we should firstly defined the parame-
ter A=1- e" /kl *. Note, from first equation (21) and (29) it follows that

a’(© +cosa sina av (0
dz* dz*

A =cos’a

where a =arctan(h, /h,), v* =V/u,. Our suggestion about the dynamical rough-

ness structure is that the parameter a fluctuates around the mean value a =p /2.
This structure looks like furrows elongated along of the mean flow stream lines
in the viscous sublayer (see, for instance, Cantwell, Coles & Dimotakis (1978)
where a visualization of the coherent structure in the turbulent boundary layer is
presented).

Thus for the mean flow A=1- e’ /kl =0, then the length scale | * =hu, /nn
can be found as the solution of the equation

kR = w; exp[1,(R)] (30)
where R =1"w;, w, =h /nu, isthe second scale of the turbulent velocity. For
an arbitrary value w, the equation (30) has two roots or hasn't any roots and only
if dk /dR =0 this equation has one root. Hence for the uniqueness of the mean
velocity profile should be done

1 dk _ed, e°
w; R~ R dR R’
The numerical solution of the equation (31) with 1,(R) determined from (27)
gives R =R »122 and therefore the predicted values of the turbulent theory

0 (31)
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constants are given by w =kR exp(-1,) =014, | =R /w =871 for k =0.41.
The fundamental parameter of length for the turbulent boundary layer is defined
from here: | =1 ;n/u »87In/u, that aimost coincides with the peak of turbu-

lence production :%g? <uw¢>z—zg, obtained by Klebanoff (1954) and Laufer

(1954) - see for instance Rotta (1972) (this book has been kindly indicated by
referee).

If A=0then!| "=1 } in(29) and this equation can be presented in the form:

du* gl .. xRc;(x,R")dx
= , 11, RY) = 32
dz" ki "Y1+ (2 11" P RITOT e 2
Integrated the first equation (32) we have:
A el 'dzt _1(E - Dax 1% dx _
O JAL+(Z 1,72 K O i K ?\/l+x
EINCIEEE ) - S A
KO Jiexe kg Vs
The standard logarithmic profile can be derived from hereat z* >>1,*:
L1 1% -1 1 13
u —klnz +C,, Co_kmdx-kln 5 (33)

Therefore, with the given constant k  another constant of the mean velocity
logarithmic profile can be calculated from (33). It gives ¢, =5015 for k =041.

The velocity profile calculated with (32) for k =041 1 ;=871 is shown in Fig-

ure 3, a by the solid line (1). The predicted profile (1) has been compared with
the mean velocity profile computed on the model of the transitional layer pro-
posed by Van Driest (1956), which is shown by the solid line (2). As explained
by Cebeci & Bradshaw (1984) the Van Driest's model can be written in the form

du_ (- <umwe>)" du

G k4l-exp(-z/ly O Suwe g =

(34)

where |, isthe damping length, I, =26n/u, .

The profile computed on (34) coincides with the predicted profile 1 in the visc-
ous sublayer and in the logarithmic layer but differs a bit in the transitional layer
(see Figure 3, a). This difference can be explained by the pressure gradient ef-
fect. Figure 3,b demonstrates the comparison of both profiles (1,2) with several
data bases. 3 - the direct numerical simulation of the turbulent flow in the two-
dimensional channel (Re=2980) by Kuroda et al (1989); 4 - the turbulent
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boundary layer in zero pressure gradient (d;=40643) by Nagano et al (1992)

and 5 - the turbulent boundary layer mean velocity profile (Re=13052) pre-
sented by Smith (1994). Note that both profiles well correlated with computed
and experimental data.

In the upper layer for z* 3 d the mean velocity profile should be constant in
contrast to the logarithmic profile which divergesat z*® ¥. As it is well
known in the outer region of the turbulent boundary layer the mean velocity pro-
file can be described by the defect low U/ - u* =w(z/d,), where the universal
function w =w(z/ d,) weakly depends on the Reynolds number and roughness pa-
rameters in the case of a zero pressure gradient.

One can suggest that the mixed layer turbulence is generated in the same way as
the wall turbulence. Then the new dynamic roughness surface can be introduced
and the equation system which is similar to (21) can be derived. In the case of
the mixing layer we can put | =1,. With two characteristic scales d, and |, the
general solution for the boundary layer mean velocity profile can be written as

(see Trunev (1999))
eJ1+z’

k

u =eu (z")- %(Arsh(i) + Arsh(io)) + (arctanz + arctan 70) (35)

where e, =1+ (1- €) /KV. Re. \/1+ 22 » 1+09/Re., z=(z- 7,)/\idy, 2 =0,/ 2 is the
middle position of the mixing layer, z, =z,/V.d,, Re. =ud,/n, u’(z")is the
mean velocity profile in the inner layer given by eq. (32), Arsh(z) = In(z+~1+22).
Profile (35) depends on two dimensionless values which have been defined from
experimental data as V. =0.27; e =0.79. The mean velocity profile and defect low
calculated on (35) are shown in Figure 3, c-d, together with experimental data

by Nagano et all (1992). Note, that the agreement between theoretical and ex-
perimental results in general is good.
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Figure 3. Mean velocity profile in the turbulent boundary layer: @) profiles com-
puted on the present model (1) and van Driest model (2); b) comparison of com-
puted profiles (1-2) with DNS data (3) and experimental data (4-5); c) the solid
line is computed on eq.(35), experimental data Nagano et all (1992) presented
by symbols d) defect low: the solid line 1 is computed on eg. (35), 2,3 - experi-
mental data by Nagano et all (1992)

3. Rough surface effect modelling
3.1. Rough surface model

The additive dynamic roughness surface model considered above is given by
h(x,y,t) =r(x,y) +h (x,y.1)

where h (x,y,t)is the height of the viscous sublayer over the rough surface. Av-

eraged this equation over a large area DxDy =L,L, we have: h=r,+h,h =h,,

where r, is the mean roughness height,

ra = L L m(x’ y)dXdy

X =Y DxDy

After replacing of the origin of the coordinate system in the new position
z® z- r, the dynamic roughness equation can be written as:
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h(x,y,t) =r(xy) - r, +h(x,y,t) (36)

where h =h,h, =h,. Thus, we can imagine the smooth wall located at z=r, as

was defined by Schlichting (1936) and the dynamic roughness surface with dy-
namic roughness parameters given by (36). For this problem we should suggest
that h >0.

Note that the fluid flow near the plane surface z=r, is atypical heterogeneous
flow included two parts: the roughness rigid elements part S, =S, (r,) and the
fluid flow part equalsto DS- S,, where DS=L,L,. Put L, =DS/S,(r,) istheratio
of the whole area DS=L,L, to the roughness area S, =S (r,)a z=r,. The

roughness density parameter proposed by Dvorak (1969) isgivenby L =DS/S,
where S is the total roughness area. Since r, =ak /L, SO L_ =L _(r,) can be
considered as a function of the Dvorak's roughness parameter: L, =L (L.). For

the roughness elements considered by Bettermann (1966), Schlichting (1936)
and Coleman et. al. (1984) this function can be calculated in the closure form.

For the roughness compounds by the spherical uniform elements r, =2k /3L _,
S,(r,)=91- (1- 2r,/k)?], hence

1_8® 20
L, 3L2& 3L.p

a

(37,9

In the case of the surface roughened by spherical segments (see Figure 1) we
have: r, =k (3+k2/r?) /6L, S,(r,)=Sa+rk /r?)1-r,/k), therefore

1 _S(r,)  1e& 3+ebxe e(3+¢€)0
L.- DS L.& 6. 6. o (37.0)

a S

where, e=k ?/r?.

In the case of the surface with conical uniform elements S, (r,) =S(1-r, /k )? ,
r,=k /3L, thus

1 l1la& 16
- L= 7
L, Lsgl .o (37.0)

.2

In the case of two dimensional roughness as it has been considered by Better-

mann (1966), Dvorak (1969) and Dalle Donne & Meyer (1976) L, =L (r,) de-

pends only on the roughness elements width and pitch (see Figure 1):
L,=L,=L/d (37.d)

The mean liquid surface between the roughness elements at z=r, equals
to(1- 1/L,)DS, therefore the mean fluid density r =(1- 1/L_)r (note that in the
real case additionally some liquid volume can be excluding from the mean flow,

http://ej.kubagro.ru/2010/04/pdf/23.pdf



http://ej.kubagro.ru/2010/04/pdf/23.pdf

Hayunsrtit sxypaan KyoI'AY, Ne58(04), 2010 roaa 22
henceitcanbe r=(1-f /L, )r where f 31 isthe shape parameter counted for

instance the liquid involved in the viscous sublayer around the roughness ele-
ments). The mean dynamic viscosity isdefinedas m=rn=(1- 1/L ) .

Thus L, =L _(r,)is the important parameter for the rough surface effects model-
ling because the boundary condition for the mean velocity gradient should be
givenat z=r,.

3.2. Mean velocity logarithmic profile in turbulent flow over rough surface

The mean velocity logarithmic profile in the turbulent flow over the rough sur-
face can be derived from (32) written in the new coordinate system:

du* _ exp(f, - B - h & Wdh,

d" k1@ 1) | n QLenh?
where z =z-r,, [, =lim, o, (), h,=z/h, n, =/} +h] .

The boundary condition for the equation (38) on the effective smooth wall is
given by

(38)

mdu/dz, =t, a 2z =0 (39, @

where t_ is the effective shear stress applied to the effective smooth wall at
z=r,. Thus for the dimensionless mean velocity gradient on the effective wall
INn common case one can propose the equation

mdu* /dz =G, =nt /t at z' =0 (39, b)

As it follows from the mean velocity logarithmic profile in the turbulent flow
established by Schlichting (see eg. (4)) the dimensionless turbulent length in the
first equation (38) depends on the roughness parameters and thus can't be de-
fined from an equation similar to eg. (30). To define | * note, that for the com-
pletely rough regime in the classical sense, when k* >>1, one can suppose that

P » B . Then the exact solution of the problem (38-39) can be written as

u = kim(kc;azl+ +1+ KG,Z)?] (40)

But this equation also follows from (38) if we put R =0 in the non-linear model
(24), and therefore I =1, =0. Hence, in the case of turbulent flow over a rough
surface the main turbulent length scale can be defined as | * =1/kG, t | ;, and the
second scale of the turbulent velocity equals zero.

The mean velocity logarithmic profile follows from (40) at the long distance
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fromthewall. Put z* >>1/kG, in (40), and then we have
u* :kilnzl+ +c, where c:klln(&Ga).

This equation can be rewritten in the standard form as follows:
1

1
” Ink” - D(L,), D(L.)=c,+—In

k' 2kk'G, (41)

+ 1 +
u = k—an +C -
where c, =5015. Note, that the finale result (41) mainly depends on the mean
velocity gradient applied to the effective smooth surface at z' =0.

3.3. Roughness density effect model

There are two available cases which can be realised in the experimental situa-
tion: the roughness elements installed on the absolutely smooth surface and the
roughness elements installed on the rough surface. In the first case we surmise
that the mean velocity gradient applied to the effective smooth wall is propor-
tional to the velocity gradient over a smooth surface given by the first equation
(32) for z=r,. Used the boundary condition (39,b) we have:

t b exp[l, - I(r,)]

@-f /L,)G,=-2= 2 (42)
U ke, 1+, 1)

where the shape parameterf 3 1 introduced to estimate the frontal and leeward

re-circulation zones effect, r’ =r,u /n, b is the parameter. Suggested that

b/{1+(,/r))> =b, where b, is a function of the roughness parameters, we
have (for the smooth background surface):

b
A-1/L)6, =22, g=elly- 1) 43)

here gis the transitional layer parameter. Note, that for the high value of the
roughness density parameter may be k' >>1 (completely rough regime in the
classical sense), but simultaneously r” =ak’/L_£1. Thus g =1 for the com-
pletely rough regime (in the non-classical sense) defined only for r >>1; asit
follows from the second equation (43). The main turbulent length scale can be
estimated from (43) as | * =1/kG, =r (L-f /L, )/bg.

Substituted G, from (43) into the second equation (41) finally we have:

DIL )= +1| a(l-f/L,) Ing
L=y T "k

(44)
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The rough surface effect model (44) depends on two parameters b ,,f chosen
from the best correlation with the experimental data. We should underlined that
b, is the friction parameter of the rough surface and f is the parameter of the
mean density of fluid involved in the mean turbulent flow at the level z=r,.

In the second case the mean velocity gradient model is the same as (44) but we
should put r, =ak, /L +r, where r the averaged height of the background

roughness is. Both models have been testified and shown the good agreement
with the experimental data.

3.4. Modelling of roughness density effect. 3D roughness elements

To test the roughness surface effect model (44) the turbulent flow data for 3D
roughness elements obtained by Schlichting (1936) and re-evaluated by Cole-
man et. al. (1984) has been used. The main result reported by Coleman et. al.
(1984) is that some Schlichting's data was obtained probably in the transitionally
rough regime. The experimental techniques in Schlichting's (1936) and Cole-
man et. al. (1984) experiments have been analyzed and it was surmised that
Schlichting's data was measured in the fully rough regime but some details of
his experimental technique have not been reported.

The computed (1) and experimental data by Schlichting (3) and Coleman et. al.
(5) are shown in Figure 4 for spheres (Fig. 4,a), spherical segments (Fig. 4,b)
and cones (Fig. 4,c). The points (4) are computed from the experimental data by
Coleman et. al. (5) which has been corrected with transitional layer parameter g
calculated on (27-28) as follows g =exp[1264- 0805arctan(0.048r,")]. As it IS
shown in Figure 4 the transitional layer effect is essential for the plate with
roughness in a form of spherical segments (two points with k' =14; 27 and con-
sequently L . =318;17.9) and conical elements (two points with k* =55 211 and
L,=318179 respectively), and relatively small for all data with
r” =ak' /L 2 16, including data for the plate roughened by spheres. Note, that

the experimental data re-evaluated by Coleman et. al. (1984) is getting closer to
the original Schlichting's data after the correction on the transitional layer effect.
Therefore it seems to be clear that the data by Coleman et. al. (1984) is rather
based on another experimental technique then the original Schlichting's data.

The corrected data has been used to estimate the parameters b ,,f in the equa-
tion (44) which can be written for the completely roughness regime (g =1) as
follows

1 a@-f/L))

D(L,)=c, +EInT (45)

http://ej.kubagro.ru/2010/04/pdf/23.pdf



http://ej.kubagro.ru/2010/04/pdf/23.pdf

Hayunsrtit sxypaan KyoI'AY, Ne58(04), 2010 roaa 25

where the roughness parameters a,L, =L _(r,) are given by (37, ac) for the
spheres, spherical segments and conical elements respectively.

As it has been established in the case of the plate with spheres b, =065, f =111
for the data obtained by Coleman et. al. (1984) (solid line (1) in Figure 4,a) and
b, =04, f =125 for the corrected points. For the roughness elements in the form
of spherical segments b, =3, f =1 (solid line (1), Figure 4,b) and for the conical
elements b, =07, f =1 - see Figure 4,c. For comparison the Bettermann-
Dvorak's correlated line (2) also is shown in Figure 4.

The magnitude b, can be explained in terms of the rough surface drag which has
the same value for the spheres and conical elements and mach less for the sur-
face with spherical segments. The mean fluid density parameter is f » 1 for con-
sidered types of roughness elements. Note that in the case of the surface rough-
ened by spheres the function D(L,) hasamaximumat L _ » 2.35 (as has been es-
tablished in numerical experiments the maximum location depends on the value
f approximately as L » 2175 ?° for therange 1£f £2).

The experimental data for the surfaces with spheres, spherical segments or coni-
cal elements can be collected together used an "universal" parameter wich is dif-
ferent from that proposed by Bettermann (Dvorak (1969), Dirling (1973), Simp-
son (1973), Kind & Lawrysyn (1992) and other. This correlation is available for
the high roughness density parameter at L . >>1, then
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Figure 4. Roughness density effect on the turbulent flow in a case of 3D rough-
ness elements: a) spheres; b) spherical segments; ¢) cones; d) the generalised
correlation

1
+—1
D(L,) » ¢, K n2b0LS

and therefore the "universal" parameter is given by L =bL /a . The solid line
(1) computed on the equations (37,a), and (45) for b,/a =1, f =111 isshown in
Figure 4, d with the corrected experimental data for the rough surfaces with
spheres (2), spherical segments (3) and conical elements (4) . The classic sand
grain-roughened pipe flow experiment of Nikuradse (1933) with
D=-3,L.=4/p is presented by point (5). The hoar-frost roughness data of
Kind & Lawrysyn (1992) is plotted by points (6). Note, that data of Kind &
Lawrysyn (1992) has been corrected with transitional layer parameter

g = exp[1264 - 0805arctan(0.048r," )]/ (1+L r, /ak,)

where r, =ak, /L +r,, a=1/3 r, =k f, is the averaged height of the back-
ground roughness, f. depends on the frost formation and has been calculated for

the plate 16 of Kind & Lawrysyn (1992) as follows
f, =0.013,0.04;0.12;,0.12;0.04;,004 . In this case b, =0.7 as for the conical elements.

The experimental data for 3D roughness elements of Simpson (1973) is shown
by symbols (7). For his data 045£ b, /a £ 055.

Thus one can suggest that the rough surface with spheres is the basic case for 3D
roughness elements, because all data shown in the Figure 4, d is correlated well
with the basic line (1).

Then one can propose the model for b, considered this parameter as a function of
the width-to-height ratio b =b (d/k). For instance, a b /a =1 we have the
Dvorak's roughness density parameter L =L_=DS/S. For a linear function
b,=b,d/k) the"universal" parameter is related to that of Bettermann (1966)
since in the case of transverse square bars S=d,a =1 and hence L =b,L/k,,
where b, isthe numerical value.

3.5. Modelling of roughness density effect. 2D roughness elements
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The empirical model of Dalle Donne & Meyer (1977) for 2D roughness com-
posed by the transverse rectangular rods is based on the roughness density pa-
rameter

I‘*D :(L- d)/kr :(d/kr)(Ls- 1)

With this parameter the experimental data of Dalle Donne & Meyer (1977) and
other sources summarized in Table | can be described as follows
1 93(L,) "% 1£L, £63

. .ok
D(L5)=¢ +(2+7/L,)lg- - R R=i

. . 46
$104(L°,)°%*, 63£ L, £160 (46)

This correlation has been derived by Dalle Donne & Meyer (1977) for the range
of the experimental data parameters 0086 £ k /d £50 and 185£ L _ £ 980 .

As it is shown (see (46)) the rough surface effect depends on two roughness pa-
rameters k /dand L',. Thus, there is no any "universal" parameter for 2D
roughness elements in the common case. But the experimental data with various
k /dcan be plotted together as the graph of the function
D,(L,)=D(L,)- (2+7/L,)lg(k /d). Figure 5 demonstrates D,(L,) calculated
according to ( 46) - solid line (1) and the experimental data found for 2D rough-
ness elements by various authors listed in Table 1 (the corrected and reduced
data or R(¥),, from Table 2 of Dalle Donne & Meyer (1977) has been used as
long as correlation (46) was proposed for this values). The symbols description is
given in the right part of Figure 5 and Table 1. As it is shown the correlation is
good for the middle and high value of the roughness density parameter, but for
L', »1 the scatter of the points is rather large and can't be explained by the ex-
perimental technique differences only.
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Figure 5: D, vs L',- the solid line. 2D roughness elements data 1-18 has been

obtained by authors listed in Table 1

Table 1.
Authors Year Geometry L/d k., /d Symbol
Mébius 1940 Tube 10.0-29.22 0.3-2.20 3
Chu & Streeter 1949 Tube 1.95-7.57 0.93 4
Samg 1952 Tube 2.0-2.3 0.88-1.37 9
Nunner 1956 Tube 16.36 0.8 16
Koch 1958 Tube 9.8-980 1.0-5.0 5
Fedynskii 1959 Annulus 6.67-16.7 1.0 10
Draycott & Lawther 1961 Annulus 20 1.0 2
Skupinski 1961 Annulus 2.0-41.0 1.0 6
Tube 22.2-1334 2.0
Savage & Myers 1963 Tube 3.66-43.72 1.33-2.67 13
Perry & Joubert 1963 Wind tunnel 4.0 1.0 19
Sheriff, Gumley & France | 1963 Annulus 2.0-10.0 1.0 14
Gargaud & Paumard 1964 Tube 1.8-16.0 1.0-1.67 1
Annulus 10.0-16.0 1.0

Bettermann 1966 Wind tunnel 2.65-4.18 1.0 20
Massey 1966 Annulus 7.53-30.15 1.06 15
Kjdlstrom & Larson 1967 Annulus 2.02-38.52 0.086-4.08 12
Fuerstein & Rampf 1969 Annulus 2.91-25.04 0.42-2.50 8
Lawn & Hamlin 1969 Annulus 7.61 1.0 17
Watson 1970 Annulus 6.49-7.22 1.0 11
Stephens 1970 Annulus 7.20 1.0 18
Webb, Eckert & Goldstein | 1971 Tube 9.70-77.63 0.97-3.88 7
Antonia & Luxton 1971 Wind tunnel 4.0 1.0 21
Antonia & Wood 1975 Wind tunnel 2.0 1.0 22
Dalle Donne & Meyer 1977 Annulus 4.08-61.5 0.25-2.0 24
Pineau, Nguyen, Dickin- 1987 Wind tunnel 40 1.0 23
son & Belanger

Using the roughness density parameter model in the form (37, d) and suggesting
that g =1 (completely rough regime) one can write (44) for this case as follows

http://ej.kubagro.ru/2010/04/pdf/23.pdf



http://ej.kubagro.ru/2010/04/pdf/23.pdf

Hayunsrtit sxypaan KyoI'AY, Ne58(04), 2010 roaa 29

D(L,)=c¢, +%In% (47)
For the constant value of the parameters b ,f the function D(L ) has a maxi-
mum at L =2f . This maximum can be defined from (46) as L =63k /d+1,
and therefore f =(6.3k, /d+1)/2. Thus as it follows from the experimental data
the shape parameter varies with k /d. To compare the experimental data with
the arbitrary value of the shape parameter let us introduce the roughness density
parameter in the form L, =L _/f , then the roughness density effect model (47)

can be rewritten as

D(Lf):c0+1|nw- I /k.) (48)

k  2bL, k
where b =b k /d.

In this model the experimental data for various k. /d can be plotted together as
the graph of the function D, (L) =D(L,)+1/k In(df /k,) as well as in the Dalle

Donne & Meyer's model (46). But as it has been established the shape parameter
derived from the model (46) isn't a good approximation.

g
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Figure 6. D, vs L, - the solid line. 2D roughness elements data 1-24 has been
obtained by authors listed in Table 1

Note that in the common case one can suggest that f =1+f,k /d, where f k. is
the total length of the frontal and leeward re-circulation zones. The model (46)
gives for this parameter the unphysical result f, =315- d/2k, . Thus the experi-
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mental data of various authors listed in Table 1 has been used to find the right
formof f and b ,. The best correlation for about 130 pointsis given by

k d
f=1+f-0 fo=ep(- B InBY%), by = by - (49)

where B=(1+k /d)/L g, =0625b =012.

Figure 6 shows D, (L, ) calculated on (48-49) - the solid line (1), and the experi-
mental data 1-24 of various authors listed in Table 1 (note, we have used values
R(¥) from Table 2 of Dalle Donne & Meyer (1977) instead of the original data

1-18). The symbols description is given in the right part of Figure 6 and in Table
1. A fragment of the correlated line is shown in the lower part of Figure 6. One
can see that the predicted roughness density effect (the solid line) is in a good
agreement with the available experimental data.

Finally note that formulas (49) are derived for the rough surface composed by
the transverse rectangular rods and can't be applied to 2D roughness elements of
another form without additionally verification.

3.6. Model of the total length of the frontal and leeward re-circulation zones
Analyzing expression (48) one can find two singular points: L, ® 1, and
L, ® ¥, which correspond to two branches of function D, (L, ). Dalle Donne &

Meyer (1977) model (46) also has two singular points L', ® 0 and L', ® ¥ .
Taken into account that L, =(d/k )(L.-1) one can conclude that these two
singular pointsarelocatedat L ® 1 and L ® ¥ accordingly. Aswe can see

from the data shown in Figures 5 there is probably another singular point at
L, » 1. The data collected around the point at L", » 1 has been obtained mainly

for k /d=1. Thusthis point canbea L_»2 . But generally speaking what is

the physical reason for this point? In Figure 7a the normalised total length of the
frontal and leeward re-circulation zones (solid lines) which depends on the Dvo-
rak's roughness density parameter f, =f (L .) and the mean fluid density (broken

line) calculated for k /d =05 2;5 are shown.
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Figure 7. a) The normalised total length of the frontal and leeward re-circulation
zones, f, =f,(L.) (solid lines), and the normalised mean fluid density as a func-
tion of the Dvorak's roughness density parameter (broken lines), calculated for
k /d=0525.

b) The roughness density effect on the shift of the mean velocity logarithmic
profile, D=D(L ), at fixed k /d =5: the solid line 1 is calculated according to

model (45)-(49), The solid line 2 is calculated on (47), (49) wheref, was de-
creased on 10%

As we can see from Figure 7a the total length has a maximum located in a
pointL’, =L (k, /d). According to this the effective mean fluid density has a

minimum which may be less then zero. As it follows from (39, b), if t_ islim-
ited value and W ® 0 then G, ® +¥ thus it is a singular point for the function
D=D(L,). Physically it means that the frontal and leeward re-circulation zones

have intersection. Asit is well known in this case the skimming flow is realised.
In the model (49) this regime is counted statistically and probably with some er-
ror. In any case the data over the point L°, » 1in Figure 5 is replaced to the point

L. =1in Figure 6. Note that correlated line goes throughout this data better in
Figure 6 than in Figure 5.

An unexpected result has been found out in numerical experiment that function
D=D(L,) has one maximum for k /d<1436 and two maximum for

k /d?3 1436 as shown by the solid lines 1 in Figure 7b calculated for k /d =5.
This result is very sensitive to the variations of the value f,. If f, is multiplied
by 0.9 then the function D = D(L .) louses the singular point and looks like solid

line 2 in Figure 7. Now we have only experimental data shown in Figure 7
which is not sufficient to confirm this result.
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A restriction for this model can be established if the length scale
|*=r @-f/L,)/b,g found out for the rough surface is compared with the main

turbulent length scale | ; computed for the boundary layer over a smooth surface
as 1731/, It puts the limitation for the normalised mean fluid density as
(@-f /L)% 1. b,/r »1/r] for 2D roughness considered above. If this restriction

Is broken then it means that the model (48)-(49) also can't be used properly.
Supposed that inthiscase 1" =1 one can regularise the functionD = D(L ) in

the singular point shown in Figure 7,b.
4 Conclusion

The turbulent boundary layer model has been derived directly from the Navier-
Stokes equation. The model is based on the special type of the Navier-Stokes
equation transformation and thus this model doesn't need in any closures for the
Reynolds stresses. The model has been testified in the case of the turbulent flow
over smooth surface. The roughness density effect model with the transitional
regime parameter has been proposed. With this parameter the equivalent sand
roughness data obtained by Coleman et. al. (1984) has been corrected in the case
of turbulent flow over the surfaces with spherical segments and cones. After cor-
rection this data became very close to the original Schlichting's results.

In the case of 2D roughness elements the experimental data bases published by
many authors have been analysed and the re-circulation zones total length pa-
rameter has been proposed. The rough surface effect on the turbulent flow is
calculated. The agreement between computed outcomes and experimental data
in general is good.
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