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В работе представлена модель турбулентного по-
граничного слоя над шероховатой поверхностью. 
Модель основана на специальном преобразовании 
уравнения Навье-Стокса. Турбулентный погранич-
ный слой в этой модели рассматривается как тече-
ние над шероховатой поверхностью, генерируемой 
вязким подслоем (эффект динамической шерохо-
ватости). Дана  оценка влияния шероховатой стен-
ки на параметры логарифмического профиля в 
случае 2D и 3D  элементов шероховатости 
 

The model of the turbulent boundary layer over a 
rough surface is presented. The model is based on the 
special type of transformation of the Navier-Stokes 
equation. The turbulent boundary layer in this model is 
considered as a flow above the rough surface gener-
ated by the viscous sublayer (the dynamic roughness 
effect). The roughness density effect on the shift of the 
mean velocity logarithmic profile has been estimated 
in the case of 2D and 3D roughness elements 
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1. Introduction 
The study of the rough wall turbulence is important in fluid mechanics, in the 
atmosphere and ocean and in engineering flows. The rough surface effect on the 
turbulent boundary layer has been considered by Nikuradse (1933) Schlichting 
(1936, 1960), Bettermann (1966), Dvorak (1969), Simpson (1973), Dirling 
(1973),   Dalle Donne & Meyer (1977), Jackson (1981), Osaka & Mochizuki 
(1989),  Raupach (1992) and other.  
Nikuradse (1933) established (for sand-roughened pipes), that if the roughness 
height significantly exceeds the viscous sublayer thickness, then the mean veloc-
ity profile can be described by the logarithmic function: 
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where uτ  is the friction velocity, uτ τ ρ= / , τ is the wall shear stress, ρ  is the 
fluid density, z is the distance from the wall - see Figure 1, k s  is the characteris-
tic scale of the sand roughness, κ ,cs  are empirical values. Nikuradse found that 
κ = =0 4 85. , .cs  for the completely rough regime. He compared the mean velocity 
profile (1) with the law of the wall, derived by him before in 1932 for turbulent 
flows in smooth pipes, as follows  
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where ν  is the kinematic viscosity, κ = =0 4 550. , .c  are the logarithmic profile 
constants for the hydraulically smooth surface. ∆U  is the shift of the mean ve-
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locity logarithmic profile which can be defined for the turbulent boundary layer 
over a rough surface as 

  ∆U
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u k
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= +
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ln                                                     (3)  

where Ds ≈ −30.  for the completely rough regime. Nikuradse has shown that the 
dimensionless roughness height parameter k u ks s

+ = τ ν/  can be used as an indi-
cator of the rough wall turbulence regime. He proposed to consider three typical 
cases: 

• the hydraulically smooth wall for   0 5< ≤+k s ,  ∆U = 0 ; 

• the transitionally rough regime for 5 70< <+k s , Ds  varies with  k s
+ ; 

• the completely rough regime for k s
+ ≥ 70 , Ds ≈ −30. . 

Thus, the sand-roughened wall turbulence depends on the dimensionless rough-
ness height (roughness Reynolds number) k s

+  as has been established by Niku-
radse. 
Schlichting (1936), used the Nikuradze's date base and his own experimental re-
sults obtained in the water tunnel of rectangular cross section with the upper 
rough wall,  proposed the new form of the equation (1) which is well counted 
the roughness effect on the turbulent boundary layer by means of the effective 
wall location ( ∆z ) and the equivalent sand roughness parameter kes . With this 
parameters the mean velocity profile in the turbulent flow over an arbitrary 
rough surface can be written in the Nikuradze's form (1) as follows: 
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1 1ln                                                          (4) 

where z z z1 = − ∆  (see Figure 1). The effective wall location was defined by 
Schlichting as the mean height of the roughness elements (the location of a 
"smooth wall that replaces the rough wall in such a manner as to keep the fluid 
volume the same"). The value kes  has been measured  by Schlichting for several 
types of the roughness elements with various shapes, sizes and spacing. The 
Schlichting's experiment was re-evaluated by Coleman et. al. (1984) and they 
noticed that some Schlichting's data have been obtained in the transitional rough 
regime. 
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Figure 1: The scheme of the turbulent flow over a rough surface (left), and the 
roughness elements  are considered in the paper (right): spheres, spherical seg-
ments, conical elements (3D) and transverse rectangular roods (2D)   
 
Clauser (1956) has shown that the shift of the mean velocity profile can be writ-
ten as  

∆U
u

u k
Dr

τ

τ

κ ν
= +

1
ln  

where k r  is the characteristic scale of roughness elements and D  must be some 
function of the roughness geometrical parameters. Hence the equivalent sand 
roughness parameter k k D Des r s= −exp[ ( )]κ , where  Ds ≈ −30.  for sand roughness. 

Bettermann (1966) discovered that D  is the function of the roughness elements 
spacing. He introduced the roughness density parameter for roughness com-
posed of the transverse square bars as the pith-to-height ratio, Λ B rL k= /  - see 
Figure 1. Bettermann found that in the range  1 5≤ ≤Λ B  the variations of D  with 
the roughness density can be specified by 

D B= −12 25 17 35. ln .Λ  

As has been demonstrated by Dvorak (1969), the rough wall effect is well corre-
lated with the roughness density parameter defined as pitch-to-width ratio or the 
ratio of total surface area to roughness area, Λ s L d= / . Dvorak developed the 
Bettermann's model in the range 4 68 102. ≤ ≤Λ s , used the data of Schlichting and 
other researches, as follows: 

D s s
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                                       (5)  

Simpson (1973) introduced the roughness density parameter in the case of three-
dimensional (3D) roughness as Λ* ( )S S FN A= −1 , where N S  is the number of sig-
nificant roughness elements per unit area, AF  is the average frontal area of the 
"significant" roughness elements. He suggested the general interpretation of the 
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Bettermann-Dvorak correlation (5): two branches (5) exist depending on the 
formation or absence of transverse vortices between roughness elements. Simp-
son also showed that the shape of the element is an important parameter.  
The model been reported by Dirling (1973) and verified by Grabow & White 
(1975), takes into consideration the roughness elements shape parameters. The 
Dirling's density parameter is defined as ΛD r W FL k A A= ( / )( / ) /4 3  where AW  is "the 
windward wetted surface area". In a case of two-dimensional (2D) roughness the 
Dirling's parameter leads to the Bettermann's roughness density parameter.  As it 
was shown by Sigal & Danberg (1990) the shape parameters effect can be de-
scribed by the similar correlation such equation (5) and that D = 2 2.  for the two-
dimensional roughness in the range 4 89 1325. .≤ ≤Λ s .  They also underlined that 
the correlation for 2D roughness elements is not the same as for 3D elements. 
On the other hand, Kind & Lawrysyn (1992) confirmed that the Bettermann-
Dvorak function D s( )Λ  in the form (5) can be successfully used for the correla-
tion of the experimental data in the aerodynamic experiments with the natural 
hoar-frost roughness.  
Dalle Donne & Meyer (1977) correlated their data and those of previous re-
searches (19 data bases considered below in section 3.4) used the roughness 
density parameter ΛD rL d k* ( ) /= − . They developed the empirical model which 
can be applied to the turbulent flows in the annuli and tubes with inner surface 
roughened by rectangular ribs.        
Osaka & Mochizuki (1989) examined d-type rough wall boundary layer in a  
transitional and a fully rough regime. They have shown that in a transitional 
rough regime the mean velocity logarithmic profile is confirmed and that the 
Karman constant  has the same value as for the hydraulically smooth wall flow.  
The mean velocity logarithmic profile widely used in the atmospheric turbulence 
research is given by (see Monin & Yaglom (1965)): 
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where zd  is the displacement height, z0  is the roughness length. Note that zd  and 
z0  are considered often as some adjustment parameters chosen for the best corre-
lation of the local wind profile in the neutral stratified flow with the logarithmic 
profile.  The model of the displacement height has been considered by Jackson 
(1981). The roughness length model was developed by Raupach (1992) and 
other. The classification of the experimentally determined roughness length for 
various terrain types was given by Wieringa (1992). 
The objective of the present work is to develop the model of the turbulent 
boundary layer which can be applied to any cases considered above: turbulent 
flows over smooth surfaces, in the transitional rough regime and for the fully 
developed roughness. The main idea is to derive the model of the turbulent flow 
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over a rough surface directly from the Navier-Stokes equation. As shown in sec-
tion 2 the requisite model can be derived from the transformed and averaged 
Navier-Stokes equation due to the surface layer transformation introduced by 
Trunev & Fomin (1985) in the impingement erosion model and developed by 
Trunev (1995, 1996, 1997, 1999, 2000) for the turbulent boundary layer prob-
lem.  
 
2. Turbulent flow model 
2.1. Surface layer transformation 
The effective wall location was defined by Schlichting (1936) as the mean 
height of the roughness elements and in the mathematical form can be written 
as: 

∆
∆ ∆

z r
L L

r x y dxdya
x y x y

= = ∫∫
1

( , )                                          (6) 

where z r x y= ( , ) is the relief of the rough surface - see Figure 1, L Lx y,  are the 
rough wall scales in the x y,  directions, ∆ ∆x y L Lx y= . In a case of two dimensional 
roughness considered by Dvorak (1969) and Simpson (1973) the roughness den-
sity parameter depends on  width and pitch of the roughness elements (see Fig-
ure 1): Λ s L d= / . The mean roughness height depends on the height of  rough-
ness elements as r ka r s= α / Λ , where α  is the numerical constant which equals to 
unity in this case. The shift of the mean velocity can be presented as a function 
of the mean roughness height. Thus using the Bettermann-Dvorak's equation (5) 
in the range 4 68 102. ≤ ≤Λ s , we have 

 ∆
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In this approach the mean velocity profile in the turbulent flow over a rough sur-
face can be rewritten as follows 

U
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z
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= + −
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0 35 0 451ln . ln .Λ  

If we redefined the main roughness scale then the mean velocity profile takes 
the form which is widely used in the atmosphere research: 

U
u

z
rτ κ

=
1 1

0
ln                                                                           (7) 

where  18.0ln14.0ln45.0ln35.0lnln 0 +Λ−≈+Λ−= sasa rrr κκ . Practically r ra0 ≈  for 
Λ s = 5 and r ra0 0 63≈ .  for Λ s = 100 . Hence, the logarithmic profile mainly depends 
on the mean height of the roughness elements in this range of the roughness 
density.  
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Let us consider the random function defined as    

~( / ) lnu z r
u z

r1
1= τ

κ
                                                                   (8) 

where r  is the random parameter with the mean value given by 

r rf r dra s=
∞

∫0
( )  

here f f rS S= ( )  is the density of a probability distribution function (roughness 
statistic function) normalised on unity: 

0
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Both parts of the equation (8)  can be averaged with this function as follows:   
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∫ . With this result the mean-squared-value of the ve-
locity fluctuations can be calculated as 
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Thus, the random function ~( / )u z r1 can be used for the mean velocity calculation 
as well as for the mean-squared-value of the velocity fluctuations modelling. 
Our main idea is that the random function ~( / )u z r1  can be calculated on the basis 
of a solution of the Navier-Stokes equation due to the surface layer transforma-
tion  

~( / ) lim ( , , )u z r
V

u x y dxdydz
V dV

V
s

1 1

1
=

→ ∫δ
δδ

η                                     (9) 

where η1 1= z r x y/ ( , ) is fixed over the integrated region, η1 1= =z r const/ , δV  is an 
arbitrary volume put in dV L L dzx y=  and containing dVs  as a whole, dVs  is the 
subregion in which altitude of the rough surface r x y( , )  varies in limits from r  
up to r dr+ , hence by definition dV dVf r drs s= ( ) .  

Note, that the surface layer transformation is only a kind of averaging procedure 
which conserves the function properties across a boundary layer. The Navier-
Stokes equation can be averaged with the surface layer transformation (9) in-
stead of normal Reynolds averaging method to derive then the equation for the 
random function ~( / )u z r1 . Unfortunately it's impossible to use this method in the 
simple form (9), because, for example, in the case of a smooth flat plate  r = 0 .  
Therefore we suppose that there is a surface z h x y t= ( , , )  (the dynamic roughness 
surface) inside the flow domain which can be used for modelling the rough sur-
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face effect on the turbulent boundary layer. Without any limits we can choose a 
surface z h x y t= ( , , )  close to the wall surface z r x y= ( , ) , but not equal to r x y( , ) . 
Let h x y t r x y h x y tr( , , ) ( , ) ( , , )= + , where h x y tr ( , , ) is the height of the viscous 
sublayer over the rough surface.   In the turbulent flow the surface 
z h x y t= ( , , ) can be described by random continuous parameters  h, h , h , h  t x y  char-
acterising the height, velocity and inclination of the surface elements. Let’s de-
fine the subregion dVs  in which the local height of the rough surface r x y( , )  var-
ies in limits from r  up to r dr+  and parameters of the surface z h x y t= ( , , )  in lim-
its from  h  up to  h dh + , from   ht  up to   h dh  t t+ , from   h  x  up to   h dh  x x+ , 
from   h  y  up to   h dh  y y+ , thus dV dVf r h h h h drdhdh dh dhs s x y t x y t= ( , , , , ) , where 
f f r h h h hS S x y t= ( , , , , )  is the multiple density of a probability distribution function. 

Thus in common case the surface layer transformation can be written as follows 
(instead of eq. (9)) 

~( / , , , , , , ) lim ( , , , )u uz h t r h h h h
V

x y t dxdydzx y t V dV
V

s
1

1
=

→ ∫δ
δδ

η                              (10) 

where η = z h x y t1 / ( , , ) is fixed over the region of integration, η = =z h const1 / ,δV  
is an arbitrary volume put in dV L L dzx y=  and containing dVs  as a whole. Statisti-
cal moment of  order m  of a random function ~( / , , , , , )u z h t r h h ht x y1  is given by 

~ ( , ) ~ ( , , , , , , ) ( , , , , )u z t u t r h h h h f r h h h h drdhdh dh dhi
m

i
m

x y t s x y t x y t1 1= ∫ η                     (11) 

The main problem of this method is how to estimate the multiple density of a 
probability distribution function f f r h h h hS S x y t= ( , , , , ) ? Nevertheless, for the solu-
tions presented by the logarithmic function we can suppose that 

~ ~( , , , , , , ) ( , , , , ) ~( / , , , , )* *
* * *u u t r h h h h f r h h h h drdhdh dh dh u z h r h h hx y t s x y t x y t x y t= =∫ η1 1  

where the parameters with stars can be estimated from the comparison of solu-
tions with experimental data or calculated from some theoretical considerations. 
Practically the roughness parameter r*  should be given as an input value and all 
another parameters can be calculated from the similarity theory considered in 
sections 2.6-2.7.  
2.2. Input equations 
We shall consider the turbulent flow of fluid containing a scalar impurity. Fluid 
is assumed as viscous, heat-conducting, incompressible gas in a rather slow tur-
bulent motion.  Thus, the model of the turbulent flow is given by: 

∇ =.u 0                                                                     (12) 
∂
∂ ρ

ν
u

u u u2

t
p

+ ∇ +
∇

= ∇( . )
0
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∂
∂

νT
t

T T+ ∇ = ∇( . )u
Pr

2 ,          ∂
∂

νC
t

C C+ ∇ = ∇( . )u
Sc

2  

where ρ  is the fluid density, u = ( , , )u wv  is the flow velocity vector, ν  is the 
kinematics viscosity, p  is the pressure, T  is the temperature, Pr  is the Prandtl 
number, С  is the mass concentration of an impurity, Sc = /ν D  is the Schmidt 
number, D  is the molecular diffusion coefficient.  

Boundary conditions for the flow parameters are set as follows: 
z r x y T T C Cg g= = = =( , ): u , ,0                                          (13) 

z U T T C C= = = =δ0 0 0 00 0: ( , , ) , ,u  

where Tg  is the surface temperature, C g   is the impurity concentration at the 
wall, 0δ  is the boundary layer thickness, U0 ,T C0 0,  are the flow velocity the 
temperature and the impurity concentration in the distance z = δ0  respectively.  

  
2.3. Random flow parameters equations 

The nontrivial solutions of the Navier-Stokes equations which may play im-
portant role in the surface layer turbulent flow organisation can be written as 
u u= ( , , ( , , ), )x y z h x y t t , where z h x y t= ( , , )  is the dynamic roughness surface.  Due 
to the special type of transformation in the form (10) the velocity field, the pres-
sure, the temperature and concentration are transformed as  

S u=  →( , , , )p T C ~ (~, ~, ~, ~ )S u= p T С  

The equations for the random functions ~( / , , , , , , )S z h t r h h h ht x y  can be derived 
from the equations (12) written in the curvilinear coordinate system ( , , , )x y tη . 
Following Pulliam & Steger (1980) the equations (12) are presented in the form: 
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where J  is the Jacobian, J h J h= ≠ = ≠− −1 10 0, , 
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Here τkl   is the tensor of viscous stress,τ µ
∂
∂

∂
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In curvilinear coordinate system it is necessary to execute replacements in terms 
with gradients: 

∂
∂

∂
∂

∂η
∂

∂
∂ηx x xj j j

→ +   for j = 1 2, ; ∂
∂

∂
∂ηz h

→
1  ,  

Let us consider the special  types of solution of transformed equations (14) 
which depend only on time and normal variable η  as it often suggested in the 
turbulent boundary layer theory. Thus let’s suppose that  

0)()( =−=− vv yx
FFEE

∂
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∂
∂  in the left part of (14). In this case eq. (14) can be 

presented in the form  
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where parameters with tilde are defined similar  to ~ (~, ~, ~, ~ )S u= p T С  as it follows 
from (10). In the equation (14') the dissipate terms can be written as 

 

~

~
~ ~v
~ ~ /

~
~

, ~

~v ~
~v

~ ~v /
~

~

, ~E

Pr

F

Pr

v

x

y x

x

x

x

v

x y

y

y

y

y

h

h u
h u h
h w u

h T
Dh С

h

h h u
h

h w
h T

Dh С

= −
+
−

























= −

+

−

























− −

η

µ
µ µ
µ µ η

ν

η

µ µ
µ

µ µ η
ν

η

η η

η η

η

η

η η

η

η η

η

η

0
2

0

2

1 1

G

Pr

v n
h

u

w
T

DС

= +

























−

( )

~
~v
~

~
~

1
1

0

2 2

1

η
∂
∂η

µ
µ
µ

ν

 
 
where  ~ ~ /u uη ∂ ∂η= , .… 

On the other hand to derive the equation (14') one can applied the averaging op-
erator in the form (10) with an arbitrary averaging volume δV  to equation (14) 
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to conserve the commutative properties of the averaging operator with the space 
and time differential operators. Then one can consider the limit of all terms of 
the averaged equation at  δV dVs→ . At this step the theorem about two limits of 
the continuous function can be used (since the differential operators can be con-
sidered as some limits). Note, if ~ (~, ~, ~, ~ )S u= p T С  is the solution of the transformed 
Navier-Stokes equations (14) in any sense, then we have the turbulence model 
closures automatically as follows: 

lim ( , , , ) ( , , , ) ~~
δ

δδ
η η θδ

V dV i
V

k i k ik
s V

u x y t u x y t dxdydz u u
→ ∫ = +

1               

lim ( , , , ) ( , , , ) ~ ~
δ

δδ
η η

V dV
V

s V
x y t T x y t dxdydz T

→ ∫ =
1 u u  

CdxdydztyxCtyx
V V

dVV s

~~),,,(),,,(1lim uu =∫→
ηη

δ δ
δ

 

Here 3 2θ /   is the kinetic energy of turbulent fluctuations in the small volume 
dVs ,δ ik   is the Kronecker delta: δ ik = 0  for i k≠ , δ ik = 1  for i k= .  

Note, that in this model the Reynolds stress can be calculated as 

tyxtyxsikkkiiik dhdhdrdhdhhhhhrfuuuutz ),,,,(])~~)(~~[(),( θδρτ +−−=′ ∫  

Therefore the random function ~ ~( , , ,...)u u= η t r  gives the main contribution in the 
non-diagonal components of the Reynolds stress. Now we take it as granted be-
cause we haven't any contradictions. Hence, the first assumption of this theory is 
that the turbulence interaction between the hydrodynamic fields can be de-
scribed with the solutions ~ (~, ~, ~, ~ )S u= p T С  as well as with the solutions 
S u= ( , , , )p T С . The second assumption is that it's possible to neglect longitudinal 
and transversal gradients of flow parameters in a comparison with gradients 
across a boundary layer, at least for steady turbulent flow. Finally we have the 
dynamic equations for random flow parameters as follows:  
 

∂
∂η

η
∂
∂η

~w
− =

Φ
0                                                      (15) 

η∂
∂ν

η∂
∂ην

η∂
∂

η
η

ν
η∂

∂
ρη∂

∂
∂
∂ Φ

+−+
∂
∂

=++ 22

2
22

2

~~
)1(

~~~~

hh
nn

h
P

hh
W

t
NuuNuu  

η∂
∂ην

η∂
∂

η
η

ν
η∂

∂
∂
∂ T

h
nTn

h
T

h
W

t
T ~

Pr

~
)1(

Pr

~~~
2

2
22

2 −+
∂
∂

=+  

η∂
∂ην

η∂
∂

η
η

ν
∂η
∂

∂
∂ C

h
nCn

h
C

h
W

t
C ~

Sc

~
)1(

Sc

~~~
2

2
22

2 −+
∂
∂

=+  
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where Φ = + + = + = +h h u h P p n h ht x y x y
~ ~; ~ ~ ,v θ 2 2 , ~ ~W w= − ηΦ , 

N = − −( , , )η ηh hx y 1 (thus the value θ included in the turbulent pressure).  

The first equation (15) is the continuity equation; the second is the momentum 
equation.  
Note, that the parameters of a dynamic roughness in equations (15), are not al-
ready the functions of space variables or time. Really, in virtue of transformation 
(10), the values of these parameters are fixed in intervals from  r up to dr  r + , 
from  h up to  h dh + , from   ht  up to   h dh  t t+ , from   h  x up to   h dh  x x+ , 
from   h  y up to   h dh  y y+ . These values, thus, are considered as the random pa-
rameters, and the law of their distribution in specific intervals is described by a 
known function f f r h h h hS S x y t= ( , , , , ) .    

As we can see from the derived equations (15) there are the factors in the higher 
derivatives terms, which depend on a distance up to a rigid surface. It should be 
noted also, that the equation (14) is not in the strong conservation form, as, for 
example, it is given by Pulliam & Steger [59]. Therefore the numbers of terms in 
square brackets, breaking conservation of this system are chosen in the left part 
of equations (14) and (14'). Such allocation of non-divergent terms is stipulated 
by the purposes of modelling of the eddy viscosity, which, in our opinion, arises 
in a boundary layer from transformation of a tensor of viscous stresses in a 
neighbourhood of a dynamic roughness surface. It is obvious in the case of vis-
cous flow over a rigid rough surface and is connected with an adhesion of a vis-
cous flow to a rigid surface of any configuration. In the turbulent flow over a 
smooth surface the eddy viscosity is simulated by analogy to a more widespread 
type of turbulent flows, as in a special case, when r → 0 . Thus the eddy viscos-
ity is connected (mathematically) with transformation of a tensor of viscous 
stresses to coordinate mapping which brings rigid surface onto coordinate sur-
face.      
For the diffusion equation it is possible to derive the boundary layer model by 
the simplified way. Let us suppose that in the last equation (12) 

)),,,,(( ttzyxC  C η= , then we have  

=∇−∇+ CC
t
C 2).(

Sc
u ν

∂
∂

η
η

η
η

η
ηη

∂
∂

∂
∂

∇−
∂
∂

∇−
∂
∂

∇++
CDCDC

t
C

t
2

2

2
2)().( u =0 

In partial case when η = z h x y t/ ( , , )  thus 
212121 )(2);1,,( hhhhhhh yx ∇+∇−=∇−−=∇ −−− ηηηηηη , 

and therefore the last equation can be written as 
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η
η

∂η
∂η

η∂
∂

η
∂η
∂

∂
∂

∂
∂∇

−++=+
C

h
hDC

h
nDCn

h
DC

h
W

t
C 2

2

2

2

2
22

2

2)1(  

 
This equation can be transformed to the form of the last equation (15). Accord-
ing to definition  
 

dxdydztC
V

hhhhrtC
V

dVVtyx
s ∫→

=
δ

δ
η

δ
η ),(1lim),,,,,(~

, , 

 
Using the identity hhhhhh 22121 )( ∇+∇∇=∇ −−− , and averaging all terms, finally we 
have 
 

∫∫
∆

−

→
∇∇

∂
∂

−

−++=+

S
dVV

dxdyhhCDdz
V

C
h
nDCn

h
DC

h
W

t
C

s

)(1lim

~~
)1(

~~~

1

2

2

2

2
22

2

η
η

δ

∂η
∂η

η∂
∂

η
∂η
∂

∂
∂

δ

 

 
where   yx LLS =∆ . But the last term is annulled if region  yx LLS =∆  is large 
enough (the divergence theorem). Therefore we have an equation  

∂η
∂η

η∂
∂

η
∂η
∂

∂
∂ C

h
nDCn

h
DC

h
W

t
C ~~

)1(
~~~

2

2

2

2
22

2 ++=+
η∂

∂ην
η∂

∂
η

η
ν C

h
nCn

h

~

Sc

~
)1(

Sc 2

2
22

2 −+
∂
∂

= , 

which is identical  to the last equation (15). 
 

2.4. Pressure integral and random flow parameters equations transformation 
 
In the case of an isothermal incompressible flow the hydrodynamic part of the 
equations (15) can be written as: 

∂
∂η

~W
+ =Φ 0                                                       (15') 

η∂
∂ν

η∂
∂ην

η∂
∂

η
η

ν
η∂

∂
ρη∂

∂
∂
∂ Φ

+−+
∂
∂

=++ 22

2
22

2

~~
)1(

~~~~

hh
nn

h
P

hh
W

t
NuuNuu  

 
Put N1 = ( , , )h hx y 0 . Multiplying by a scalar way the second equation (15') on the 
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vectors N N1,  respectively one can derived the pressure gradient and the equation 
for the linear combination of momentum components Φ  as 

∂
∂η

νρ ∂
∂ η

ρ ∂
∂

~ ~P
h

h W
t

= −
2 Φ

N2                                            (16) 

∂
∂

∂
∂ η

η
ρ

∂
∂ η

ν ∂
∂η

η
∂
∂ η

ν η ∂
∂ η

Φ Φ Φ Φ
t

W
h

n
h

P
h

n
n

h
+ − = + −

~ ~
( )

2

2
2 2

2

21
2  

where N2 = +1 2 2n η . Substituting Φ  from the continuity equation (15') into the 
second equation (16) and using the first equation (16) finally we have the closed 
nonlinear model:  

  ∂
∂η∂

∂
∂ η

η ∂
∂

ν ∂
∂η

η
∂
∂ η

2 2

2

2

2 2
2 2

2

21
~ ~ ~ ~

( )
~W

t
W
h

W n W
t h

n
W

+ − = +
N

                        (17) 

Multiplying the momentum equation (15') on the vector N 2 = −( , , )h hy x 0 one can 
derived the linear equation: 

∂
∂

∂
∂ η

ν ∂
∂η

η
∂
∂ η

ν η ∂
∂ η

Ψ Ψ Ψ Ψ
t

W
h h

n
n
h

+ = + −
~

( )2
2 2

2

21                         (18) 

where Ψ = −h u h vy x
~ ~ .  

Note, that ~W  is the contravariant component of the velocity vector associated 
with the vertical turbulent movement. As it follows from (17-18), ~W  is the main 
parameter in this model describing the non-linear turbulent effect. 

 
2.5. Steady turbulent flow model 
 

In the case of a steady turbulent flow put  ∂
∂

∂
∂

∂
∂

Ψ Φ
t

W
t t

= = =
~

0  in (16-18) then 

the pressure gradient across boundary layer can be written as 
∂
∂η

νρ ∂
∂ η

~P
h

=
2 Φ  

Having substituted this expression in the second equation (16) and rewritten (17-
18) in the case of a steady turbulent flow one can find   

~ ~
( )

~W
h

W
h

n
W∂

∂ η
ν ∂

∂η
η

∂
∂ η

2

2 2
2 2

2

21= +                                              (19) 

~
( )

W
h h

n
∂
∂ η

ν ∂
∂η

η
∂
∂ η

Φ Φ
= +2

2 21  
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~
( )

W
h h

n
n
h

∂
∂ η

ν ∂
∂η

η
∂
∂ η

ν η ∂
∂ η

Ψ Ψ Ψ
= + −2

2 2
2

21  

The first integrals of the equations (19) are given by 
d
d

A I
n

Φ
η

η
η

=
−

+
1

2 21
exp[ ( )] ,     d

d
A I

n
Ψ
η

η

η
=

−

+
2

2 21

exp[ ( )] ,      d W
d

A I
n

2

2
1

2 21

~ exp[ ( )]
η

η
η

= −
−

+
  ,   (20) 

where Ai  are some constants, I
h W d

n
= −

+∫ν
η
η

η
~

1 2 20
. 

Note, that the velocity components are determined as  

[ ]~ ( )u n h h ht x y= − +−2 Φ Ψ , [ ]~ ( )v n h h ht y x= − −−2 Φ Ψ , ~ ~w W= + η Φ  

hence, used (20)  one can derive the velocity gradients equations system written 
in the normal form suitable for the numerical integration:  

  du
d

n h A e
n

n h A e

n
x

I
y

I~

η η η
=

+
+

+

− − − −2
1

2 2

2
2

2 21 1
,                                           (21) 

dv
d

n h A e
n

n h A e
n

y
I

x
I~

η η η
=

+
−

+

− − − −2
1

2 2

2
2

2 21 1
,        dw

d
A e

n

I~

η
η

η
=

+

−
1

2 21
 

 
2.6. Nonlinear model numerical solution 
 
The first equation (19) has been numerically solved in the case of the turbulent 
steady flow over a smooth surface with boundary conditions at 

η = 0: ~ ( ) , ~ / , ~ /W dW d h d W d At0 0 2 2
1= = − = −η η ,                               (22) 

where A1  is the free parameter required to obtain the limited value of the integral  

I
h W d

n
( )

~
η

ν
η
η

η
= −

+∫ 1 2 20
 for η → ∞ . This condition was used only to obtain the loga-

rithmic asymptotic of the mean velocity. The physical sense of the parameter A1  
is a clear, because this parameter is directly proportional to the normal pressure 
gradient on the wall:     

∂
∂η

νρ ∂
∂ η

~P
h

=
2 Φ ,  thus  ∂

∂η
νρ

η

~P
h

A
=

=
0

1

2 . 

First and second boundary conditions (22) are following from the definition of 
~W . 

To minimise the number of the independent random parameters the general so-
lution of the first equation (19) can be written as ~ ( / ) ( , )W h n n Rt t= − χ η1 ,  where 
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the universal function χ 1  depends on the  composition of random parameters 
(the dynamic roughness Reynolds number):  

R
hh

h ht
t

x y
=

+ν( )2 2                                                  (23) 

and satisfies to the equation 

( ) ( )1 2 02
3

1
3 1

2
1

2+ + + =ξ
χ

ξ
χ ξ

χ
ξ

d
d

R
d
dt                                        (24) 

with boundary conditions  at 
ξ = 0: adddd === 2

1
2

11 /,1/,0)0( ξχξχχ                            (25) 

 whereξ η= n  , a  is also the free parameter required to obtain the limited value 
of the integral  I ( )ξ at ξ → ∞ .  Note, that (24) can be derived from the first equa-
tion (19). Consequently the integral  I ( )ξ  depends on the composition of random 
parameters Rt  and can be calculated as 

I R
R R d

t
t t( , )

( , )
ξ

χ ξ ξ
ξ

ξ
=

+∫ 1
20 1

                                              (26) 

The integral (26) has been computed in the range  − ≤ ≤2 5 700. Rt  together with 
(24-25). Fourth-order scaled Runge-Kutta algorithms and the shooting method 
have been used to get the numerical solution. Note that for Rt = 0  this problem 
has the analytical solution: 

χ ξ ξ ξ
ξ

1 0
1( ) ( arctan )= +∫ a d . 

In this case I ( )ξ = 0 , hence one can suggest that function 

$( ) lim ( ) /
( )

I I R
d

R tt
ξ ξ

χ ξ ξ
ξ

ξ
= =

+→ ∫0
1

20 1
 

has a limited value at ξ → ∞ . It is possible if only a = −2 / π , thus 

χ ξ
π

ξ ξ
ξ

1 0
1

2
( ) ( arctan )= −∫ d  

This solution has been used as the initial position in the shooting method.  
The normalized function I Rt( ) /ξ  is shown in Figure 2,a  for the various 

56.26;32.3;83.0;026.0;83.0−=tR   - the solid lines 1-5 respectively. As it is shown 
the function I Rt( ) /ξ  is simple and smooth function as arctan( )ξ .  
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Figure 2: a) The normalised function I Rt( ) /ξ  computed on equations (24, 26)  
for the various 56.26;32.3;83.0;026.0;83.0−=tR  - the solid lines 1-5 respectively; b) 
The normalised integral I R Rt t0 ( ) /   depending on the dynamic roughness pa-
rameter for Rt > 0  

 
 
The calculated limited value I R I Rt t0 ( ) lim ( , )= →∞ξ ξ  is shown in Figure 2,b by the 
symbols together with the approximated line  

I R R Rt t t
q

0 1 38 113 0 4 1( ) / . . arctan[ . ln( )],= − +                     (27) 

q
R

R R
t

t t
=

≤ ≤
− − < ≤





−

1 0 100
1 15 150 10 100 7004

,
( . ) ,

 

To simplifier the numerical modelling of the mean velocity profile over a rough 
surface the function I Rt( , )ξ has been approximated as 

])02.04.0arctan[()(2),( 4/3
0 ξ

π
ξ ttt RRIRI +≅                                (28) 

where I Rt0 ( ) is given by (27). 

Finally note that for the negative value of the parameter Rt  in the range Rt < −2 5.  
the numerical procedure becomes unstable one. In this case the value 
I R I Rt t0 ( ) lim ( , )= →∞ξ ξ  increases considerably with the small decreasing of the 
dynamic roughness parameter Rt . Since this branch of the integral  I Rt0 ( )  will 
not be used in our analysis, therefore data for the negative value Rt < 0  is not 
presented in Figure 2, b and has been neglected in approximation formula (27).        

 
2.7.  Mean velocity logarithmic profile in turbulent flow over smooth surface 

 
The turbulent boundary layer over a smooth surface is the best example for the 
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theoretical consideration and modelling according to the model (21). In this case 
the streamwise velocity gradient can be written in the standard form using the 
inner layer variables z zu+ = τ ν/ , u u u+ = ~ / τ ,  and  boundary conditions for the 
mean velocity gradient: 

 at z du dz+ + +→ →0 1/ ;  

at z du dz z+ + + +→ ∞ →/ /1 κ ,  

where κ  is the Karman constant. As it was suggested in subsection 2.1 we have 
used parameters with stars instead of random parameters. Finally we have got 
for the streamwise velocity gradient   

du
dz

Ae
z

e
z

I I I+

+

−

+ +

−

+ + +
=

+
+

+1 12 2

0

( / ) ( / )λ κλ λ
                             (29) 

where A e I= − +1 0 / κλ , λ ντ
+ = hu n/ .  

The first term in the right part (29) has the essential value mainly close to the 
wall (if 0≠A ) and the second one gives the main contribution in the logarithmic 
layer. To derive the mean velocity profile we should firstly defined the parame-
ter A e I= − +1 0 / κλ . Note,  from first equation (21) and (29) it follows that  

+

+

+

+

+=
dz

d
dz

duA )0(vsincos)0(cos2 ααα  

 where α = arctan( / )h hy x , τu/v~v =+ . Our suggestion about the dynamical rough-
ness structure is that the parameter α  fluctuates around the mean value α π= / 2 . 
This structure looks like furrows elongated along of the mean flow stream lines 
in the viscous sublayer (see, for instance, Cantwell, Coles & Dimotakis (1978) 
where a visualization of the coherent structure in the turbulent boundary layer is 
presented).  
Thus for the mean flow A e I= − =+1 00 /κλ , then the length scale  λ ντ

+ = hu n/  
can be found as the solution of the equation 

)](exp[ 00 tt RIwR +=κ                                                  (30) 

where ++= 0wRt λ ,  τnuhw t /0 =  is the second scale of the turbulent velocity. For 
an arbitrary value w0  the equation (30) has two roots or hasn't any roots and only 
if d dRtκ / = 0  this equation has one root. Hence for the uniqueness of the mean 
velocity profile should be done 

1
0

0

0
2

0 0

w
d
dR

e
R

dI
dR

e
Rt

I

t t

I

t
+ = − =

κ                                            (31) 

The numerical solution of the equation (31) with I Rt0 ( ) determined from (27) 
gives R Rt t= ≈* .122  and therefore the predicted values of the turbulent theory 
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constants are given by w R It*
* exp( ) .+ = − =κ 0 014 , λ 0 8 71+ += =R wt

*
*/ .  for  41.0=κ . 

The fundamental parameter of length for the turbulent boundary layer is defined 
from here: λ λ ν ν0 0 8 71= ≈+ / . /* *u u , that almost coincides with the peak of turbu-

lence production = − ′ ′






ν

τu
u

du
dz4 v , obtained by Klebanoff  (1954) and Laufer 

(1954) - see for instance Rotta (1972) (this book has been kindly indicated by 
referee).   
If A = 0  then λ λ+ += 0  in (29) and this equation can be presented in the form:  

du
dz

e
z

I I+

+

−

+ + +
=

+

0

0 0
21κλ λ( / )

  ,  I z R
R R d

t
t t( / , )

( , )*
* *

+ + =
+∫λ

χ ξ ξ
ξ

ξ

0
1

20 1
                 (32) 

Integrated the first equation (32) we have: 
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+

+

+

−

+
+ + +




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

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The standard logarithmic profile can be derived from here at z + +>> λ0 : 

u z c+ += +
1

0κ
ln ,   c

e
d

I I

0 2
0

01 1
1

1
2

0

=
−

+
−

−∞ +

∫κ ξ
ξ

κ
λ

ln .                          (33) 

Therefore, with the given constant κ   another constant of the mean velocity 
logarithmic profile can be calculated from (33). It gives  c0 5015= .  for κ = 0 41. . 

The velocity profile calculated with (32) for κ λ= =+0 41 8 710. ; .  is shown in Fig-
ure 3, a by the solid line (1). The predicted profile (1) has been compared with 
the mean velocity profile computed on the model of the transitional layer pro-
posed by Van Driest (1956), which is shown by the solid line (2). As explained 
by Cebeci & Bradshaw (1984) the Van Driest's model can be written in the form 

( )du
dz

u w
z z ld

=
− < ′ ′ >

− −

1 2

1

/

[ exp( / )]κ
,         − < ′ ′ > + =u w

du
dz

uν τ
2                      (34) 

where ld  is the damping length, l ud = 26ν τ/ . 

The profile computed on (34) coincides with the predicted profile 1 in the visc-
ous sublayer and in the logarithmic layer but differs a bit in the transitional layer 
(see Figure 3, a). This difference can be explained by the pressure gradient ef-
fect. Figure 3,b demonstrates the comparison of both profiles (1,2) with several 
data bases: 3 - the direct numerical simulation of the turbulent flow in the two-
dimensional channel ( Re = 2980 )  by Kuroda et al (1989); 4 - the turbulent 
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boundary layer in zero pressure gradient (δ 0 406 43+ = . ) by Nagano et al (1992) 
and 5 - the turbulent boundary layer mean velocity profile ( Re = 13052 ) pre-
sented by Smith (1994). Note that both profiles well correlated with computed 
and experimental data.   
In the upper layer for z + +≥ δ0  the mean velocity profile should be constant in 
contrast to the logarithmic profile which diverges at   z + → ∞ .  As it is well 
known in the outer region of the turbulent boundary layer the mean velocity pro-
file can be described by the defect low  U u z0 0

+ +− = ω δ( / ) , where the universal 
function ω ω δ= ( / )z 0 weakly depends on the Reynolds number and roughness pa-
rameters in the case of a zero pressure gradient.  
 One can suggest that the mixed layer turbulence is generated in the same way as 
the wall turbulence. Then the new dynamic roughness surface can be introduced 
and the equation system which is similar to (21) can be derived. In the case of 
the mixing layer we can put I I= 0 . With two characteristic scales δ0  and λ0  the 
general solution for the boundary layer mean velocity profile can be written as 
(see Trunev (1999))   

( ) ( )u u z z
z

z zin
+ + += − + +

+
+ε

ε
κ

ε
κ0

0
0

0
2

0

1
( ) Arsh( ) Arsh(z ) arctan arctan           (35) 

where ε ε κς0 0
21 1 1 1 0 9= + − + ≈ +( ) / Re . / Re* * *z , z z z z= − =( ) / , /*0 0 0 0 2ς δ δ is the 

middle position of the mixing layer, z z0 0 0= / *ς δ , νδτ /Re 0* u= ,  u zin
+ +( ) is the 

mean velocity profile in the inner layer given by eq. (32), Arsh(z) ln(z z )= + +1 2 . 

Profile (35) depends on two dimensionless values which have been defined from 
experimental data as ς ε* . ; .= =0 27 0 79 . The mean velocity profile and defect low 
calculated on (35) are shown in Figure 3, c-d, together with experimental data 
by Nagano et all (1992). Note, that the agreement between theoretical and ex-
perimental results in general is good. 
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Figure 3. Mean velocity profile in the turbulent boundary layer: a) profiles com-
puted on the present model (1) and van Driest model (2); b) comparison of com-
puted profiles (1-2) with DNS data (3) and experimental data (4-5); c) the solid 
line is computed on eq.(35), experimental data Nagano et all (1992) presented 
by symbols d) defect low: the solid line 1 is computed on eq. (35), 2,3 - experi-
mental data by Nagano et all (1992)    
 
 
3. Rough surface effect modelling 
3.1. Rough  surface model  

 
The additive dynamic roughness surface model considered above is given by 

h x y t r x y h x y tr( , , ) ( , ) ( , , )= +  

where h x y tr ( , , ) is the height of the viscous sublayer over the rough surface. Av-
eraged this equation over a large area ∆ ∆x y L Lx y=  we have: h r h h ha r t rt= + =, , 
where ra  is the mean roughness height, 

r
L L

r x y dxdya
x y x y

= ∫∫
1

( , )
∆ ∆

                                               

 After replacing of the origin of the coordinate system in the new position 
z z ra→ −   the dynamic roughness equation can be written as: 
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 h x y t r x y r h x y ta r1( , , ) ( , ) ( , , )= − +                                         (36) 

where  h h h hr t rt1 1= =, . Thus, we can imagine the smooth wall located at  z ra=  as 
was defined by Schlichting (1936) and the dynamic roughness surface with dy-
namic roughness parameters given by (36). For this problem we should suggest 
that    h1 0> . 

Note that the fluid flow near the plane surface z ra=  is a typical heterogeneous 
flow included  two parts:  the roughness rigid elements part  S S ra a a= ( )  and the 
fluid flow part equals to ∆S Sa− , where ∆S L Lx y= . Put Λ ∆a a aS S r= / ( )  is the ratio 
of the whole area ∆S L Lx y=  to the roughness area S S ra a a= ( ) at z ra= . The 
roughness density parameter proposed by Dvorak (1969) is given by Λ ∆s S S= / , 
where S is the total roughness area. Since r ka r s= α / Λ , so Λ Λa a ar= ( )  can be 
considered as a function of the Dvorak's roughness parameter: Λ Λ Λa a s= ( ) . For 
the roughness elements considered by Bettermann (1966), Schlichting (1936) 
and Coleman et. al. (1984) this function can be calculated in the closure form.  
For the roughness compounds by the spherical uniform elements  r ka r s= 2 3/ Λ  , 
S r S r ka a a r( ) [ ( / ) ]= − −1 1 2 2 , hence 

1 8
3

1
2

32Λ Λ Λa s s
= −







                                           (37,a) 

In the case of the surface roughened by spherical segments (see Figure 1) we 
have: r k k ra r r s= +( / ) /3 62 2 Λ ,  S r S r k r r ka a a r a r( ) ( / )( / )= + −1 12 , therefore 

1 1
1

3
6

1
3
6Λ ∆ Λ Λ Λa

a a

s s s

S r
S

= = −
+






 +

+







( ) ( )ε ε ε                                    (37,b) 

where, ε = k rr
2 2/ . 

In the case of the surface with conical uniform elements S r S r ka a a r( ) ( / )= −1 2  , 
r ka r s= / 3Λ ,  thus 

                                                            1 1
1

1
3

2

Λ Λ Λa s s
= −







                              (37,c) 

In the case of two dimensional roughness as it has been considered by Better-
mann (1966),  Dvorak (1969) and Dalle Donne & Meyer (1976) Λ Λa a ar= ( )  de-
pends only on the roughness elements width and pitch (see Figure 1): 

Λ Λa s L d= = /                                                      (37,d) 

The mean liquid surface between the roughness elements at z ra=  equals 
to ( / )1 1− Λ ∆a S , therefore the mean fluid density ρ ρ= −( / )1 1 Λ a  (note that in the 
real case additionally some liquid volume can be excluding from the mean flow, 
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hence it can be  ρ φ ρ= −( / )1 Λ a  where φ ≥ 1 is the shape parameter counted for 
instance the liquid involved in the viscous sublayer around the roughness ele-
ments). The mean dynamic viscosity is defined as µ ρ ν µ= = −( / )1 1 Λ a  .   

Thus Λ Λa a ar= ( ) is the important parameter for the rough surface effects model-
ling because the boundary condition for the mean velocity gradient should be 
given at z ra= .     

 
3.2. Mean velocity logarithmic profile in turbulent flow over rough surface 

 
The mean velocity logarithmic profile in the turbulent flow over the rough sur-
face can be derived from (32) written in the new coordinate system:  

du
dz

I I

z

+

+ + + +
=

−

+1

0

1
21

exp( $ $)

( / )κλ λ
  , ∫ +

−=
1

0 2
1

2
1

11

1

~
ˆ η

η
η

ν n
dWhI                               (38) 

where z z ra1 = − , )(ˆlimˆ
10 1

ηη II ∞→= , 111 / hz=η , n h hx y1 1
2

1
2= + .  

The boundary condition for the equation (38) on the effective smooth wall is 
given by 

                            µ τdu dz a/ 1 =      at    z1 0+ =                                               (39, a) 

where  τa  is the effective shear stress applied to the effective smooth wall at 
z ra= .  Thus for the dimensionless mean velocity gradient on the effective wall 
in common case one can propose the equation 

τµτµµ // 1 aaGdzdu ==++         at        z1 0+ =                            (39, b) 

As it follows from the mean velocity logarithmic profile in the turbulent flow 
established by Schlichting (see eq. (4)) the dimensionless turbulent length in the 
first equation (38) depends on the roughness parameters and thus can't be de-
fined from an equation similar to eq. (30). To define +λ  note, that for the com-
pletely rough regime in the classical sense, when k r

+ >> 1 , one can suppose that 
$ $I I≈ 0 . Then the exact solution of the problem (38-39) can be written as 

( )u G z G za a
+ + += + +

1
11 1

2

κ
κ κln ( )                                            (40) 

But this equation also follows from (38) if we put 0=tR  in the non-linear model 
(24), and therefore 0ˆˆ

0 == II . Hence, in the case of turbulent flow over a rough 
surface the main turbulent length scale can be defined as ++ ≠= 0/1 λκλ aG , and the 
second scale of the turbulent velocity equals zero.   
The mean velocity logarithmic profile follows from (40) at the long distance 
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from the wall. Put z Ga1 1+ >> / κ  in (40), and then we have 

u z c+ += +
1

1κ
ln , where   c Ga=

1
2

κ
κln( ) . 

This equation can be rewritten in the standard form as follows: 

u z c k Dr s
+ + += + − −

1 1
1 0κ κ

ln ln ( )Λ  ,   D c
k Gs

r a
( ) lnΛ = + +0

1 1
2κ κ

                   (41) 

where c0 5015= . . Note, that the finale result (41) mainly depends on the mean 
velocity gradient applied to the effective smooth surface at z1 0+ = .  

  
3.3. Roughness density effect model 

 
There are two available cases which can be realised in the experimental situa-
tion: the roughness elements installed on the absolutely smooth surface and the 
roughness elements installed on the rough surface. In the first case we surmise 
that the mean velocity gradient applied to the effective smooth wall is propor-
tional to the velocity gradient over a smooth surface given by the first equation 
(32) for  z ra= . Used the boundary condition (39,b) we have:      

2
0

0

)/(1

)](exp[
)/1(

+++

+

+

−
==Λ−

aa

aa
aa

rr

rII
G

λκ

β
τ
τ

φ                                      (42) 

where the shape parameterφ ≥ 1 introduced to estimate the frontal and leeward 
re-circulation zones effect, r r ua a

+ = τ ν/ , β  is the parameter. Suggested that 
β λ β/ ( / )1 0

2
0+ =+ +ra  where β 0  is a function of the roughness parameters,  we 

have (for the smooth background surface):     

( / )1 0
− = +φ

β γ

κ
Λ a a

a

G
r

,           γ = − +exp[ ( )]I I ra0                            (43) 

here γ is the transitional layer parameter. Note, that for the high value of the 
roughness density parameter may be k r

+ >> 1  (completely rough regime in the 
classical sense), but simultaneously  r ka r s

+ += ≤α / Λ 1. Thus γ = 1  for the com-
pletely rough regime (in the non-classical sense) defined only for ra

+ +>> λ0  as it 
follows from the second equation (43). The main turbulent length scale can be 
estimated from (43) as γβφκλ 0/)/1(/1 aaa rG Λ−== ++ .  

Substituted Ga  from (43) into the second equation (41) finally we have: 

D cs
a

s
( ) ln

( / ) ln
Λ

Λ
Λ

= +
−

−0
0

1 1
2κ

α φ
β

γ
κ

                                             (44) 
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The rough surface effect model (44) depends on two parameters β φ0,  chosen 
from the best correlation with the experimental data. We should underlined that 
β 0  is the friction parameter of the rough surface and φ  is the parameter of the 
mean density of fluid involved in the mean turbulent flow at the level z ra= .  

In the second case the mean velocity gradient model is the same as (44) but we 
should put r k ra r s g= +α / Λ  where rg the averaged height of the background 
roughness is. Both models have been testified and shown the good agreement 
with the experimental data. 
 
3.4. Modelling of roughness density effect.  3D roughness elements 
 
To test the roughness surface effect model (44) the turbulent flow data for 3D 
roughness elements obtained by Schlichting (1936) and re-evaluated by Cole-
man et. al. (1984) has been used. The main result reported by Coleman et. al. 
(1984) is that some Schlichting's data was obtained probably in the transitionally 
rough regime. The experimental techniques in Schlichting's (1936) and  Cole-
man et. al. (1984) experiments have been analyzed and it was surmised that 
Schlichting's data was measured in the fully rough regime but some details of 
his experimental technique have not been reported.  
The computed (1) and experimental data by Schlichting (3) and Coleman et. al. 
(5) are shown in Figure 4 for spheres (Fig. 4,a), spherical segments (Fig. 4,b) 
and cones (Fig. 4,c). The points (4) are computed from the experimental data by 
Coleman et. al. (5) which has been corrected with transitional layer parameter γ  
calculated on (27-28) as follows  γ = − +exp[ . . arctan( . )]1264 0 805 0 048ra . As it is 
shown in Figure 4 the transitional layer effect is essential for the plate with 
roughness in a form of spherical segments (two points with  k r

+ = 14 27;  and con-
sequently Λ s = 318 17 9. ; . ) and conical elements (two points with  k r

+ = 55 211;  and  
Λ s = 318 17 9. ; .  respectively), and relatively small for all data with 
r ka r s

+ += ≥α / Λ 16 , including data for the plate roughened by spheres. Note, that 
the experimental data re-evaluated by Coleman et. al. (1984) is getting closer to 
the original Schlichting's data after the correction on the transitional layer effect.  
Therefore it seems to be clear that the data by Coleman et. al. (1984) is rather 
based on another experimental technique then the original Schlichting's data.  
The corrected data has been used to estimate the parameters β φ0,  in the equa-
tion (44) which can be written for the completely roughness regime (γ = 1) as 
follows 

D cs
a

s
( ) ln

( / )
Λ

Λ
Λ

= +
−

0
0

1 1
2κ

α φ
β

                                             (45) 
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where the roughness parameters  α , ( )Λ Λa a ar=  are given by (37, a-c) for the 
spheres, spherical segments and conical elements respectively.   
As it has been established in the case of the plate with spheres β0 0 65= . , φ = 111.   
for the data obtained by Coleman et. al. (1984) (solid line (1) in Figure 4,a) and 
β0 0 4= . , φ = 125.  for the corrected points. For the roughness elements in the form 
of spherical segments β0 3= , φ = 1 (solid line (1), Figure 4,b) and for the conical 
elements β0 0 7= . , φ = 1  - see Figure 4,c. For comparison the Bettermann-
Dvorak's correlated line (2) also is shown in Figure 4.   
The magnitude β0  can be explained in terms of the rough surface drag which has 
the same value for the spheres and conical elements and mach less for the sur-
face with spherical segments. The mean fluid density parameter is φ ≈ 1 for con-
sidered types of roughness elements.  Note that in the case of the surface rough-
ened by spheres the function D s( )Λ  has a maximum at Λ s ≈ 2 35.  (as has been es-
tablished in numerical experiments the maximum location depends on the value  
φ  approximately as  Λ s ≈ 2175 2 3. /φ  for the range 1 2≤ ≤φ ). 

The experimental data for the surfaces with spheres, spherical segments or coni-
cal elements can be collected together used an "universal" parameter wich is dif-
ferent from that proposed by Bettermann (Dvorak (1969), Dirling (1973), Simp-
son (1973), Kind & Lawrysyn (1992) and other. This correlation is available for 
the high roughness density parameter at Λ s >> 1 , then 
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Figure 4. Roughness density effect on the turbulent flow in a case of 3D rough-
ness elements: a) spheres; b) spherical segments; c) cones; d) the generalised 
correlation   
 
 

D cs
s

( ) lnΛ
Λ

≈ +0
0

1
2κ

α
β

 

and therefore the "universal" parameter is given by Λ Λ= β α0 s / . The solid line 
(1) computed on the equations (37,a), and (45) for β α0 1/ = , φ = 111.  is shown in 
Figure 4, d with the corrected experimental data for the rough surfaces with  
spheres (2), spherical segments (3) and  conical elements (4) .  The classic sand 
grain-roughened pipe flow experiment of Nikuradse (1933) with  
D s= − =3 4, /Λ π  is presented by point (5). The hoar-frost roughness data of 
Kind & Lawrysyn  (1992) is plotted by points (6). Note, that data of Kind & 
Lawrysyn  (1992) has been corrected with transitional layer parameter 

γ α= − ++exp[ . . arctan( . )] / ( / )1264 0 805 0 048 1r r ka s g rΛ  

where r k ra r s g= +α / Λ ,  α = =1 3/ , r k fg r r  is the averaged height of the back-
ground roughness, f r  depends on the frost formation and has been calculated for 
the plate 1-6 of Kind & Lawrysyn  (1992) as follows 

04.0;04.0;12.0;12.0;04.0;013.0=rf . In this case  β0 0 7= .  as for the conical elements. 
The experimental data for 3D roughness elements of Simpson (1973) is shown 
by symbols (7). For his data 0 45 0550. / .≤ ≤β α .  

Thus one can suggest that the rough surface with spheres is the basic case for 3D 
roughness elements, because all data shown in the Figure 4, d is correlated well 
with the basic line (1).  
Then one can propose the model for β0  considered this parameter as a function of 
the width-to-height ratio  β β0 0= ( / )d kr . For instance, at β α0 1/ =  we have the 
Dvorak's roughness density parameter Λ Λ ∆= =s S S/ . For a linear function 
β β0 0= ( / )d kr   the "universal" parameter is related to that of Bettermann (1966)  
since in the case of transverse square bars S d= =, α 1  and hence Λ = β1 L k r/ , 
where β 1  is the numerical value. 

 
3.5. Modelling of roughness density effect.  2D roughness elements 
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The empirical model of Dalle Donne & Meyer (1977) for 2D roughness com-
posed by the transverse rectangular rods is based on the roughness density pa-
rameter 

Λ ΛD r r sL d k d k* ( ) / ( / )( )= − = − 1  

With this parameter the experimental data of Dalle Donne & Meyer (1977) and 
other sources summarized in Table I can be described as follows 

D c
k
d

R RD D
r D D

D D
( ) ( / ) lg ,

. ( ) , .
. ( ) , .

* *
* . *

* . *Λ Λ
Λ Λ
Λ Λ

= + + − =
≤ ≤
≤ ≤





−

0

0 73

0 462 7
9 3 1 6 3

104 6 3 160
              (46) 

This correlation has been derived by Dalle Donne & Meyer (1977) for the range 
of the experimental data parameters 0 086 50. / .≤ ≤k dr  and 185 980. ≤ ≤Λ s  .  

As it is shown (see (46)) the rough surface effect depends on two roughness pa-
rameters k dr / and Λ D

* . Thus, there is no any "universal" parameter for 2D 
roughness elements in the common case. But the experimental data with various 
k dr / can be plotted together as the graph of the function 
D D k dD D D r1 2 7( ) ( ) ( / ) lg( / )* * *Λ Λ Λ= − + . Figure 5 demonstrates  D D1 ( )*Λ  calculated 
according to ( 46) - solid line (1) and the experimental data found for 2D rough-
ness elements by various authors listed in Table 1 (the corrected and reduced 
data or R( )∞ 01  from Table 2 of Dalle Donne & Meyer (1977) has been used as 
long as correlation (46) was proposed for this values).The symbols description is 
given in the right part of Figure 5 and Table 1. As it is shown the correlation is 
good for the middle and high value of the roughness density parameter, but for  
ΛD

* ≈ 1  the scatter of the points is rather large and can't be explained by the ex-
perimental technique differences only.  
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Figure 5: 1D  vs  *
DΛ -  the solid line. 2D roughness elements data 1-18 has been 

obtained by authors listed in Table 1  
 

 
 
Table 1.   

Authors Year Geometry L d/  k dr /  Symbol 

Möbius 1940 Tube 10.0-29.22 0.3-2.20 3 

Chu & Streeter 1949 Tube 1.95-7.57 0.93 4 

Sams 1952 Tube 2.0-2.3 0.88-1.37 9 

Nunner 1956 Tube 16.36 0.8 16 

Koch 1958 Tube 9.8-980 1.0-5.0 5 

Fedynskii 1959 Annulus 6.67-16.7 1.0 10 

Draycott & Lawther 1961 Annulus 2.0 1.0 2 

Skupinski 1961 Annulus 

Tube 

2.0-41.0 

22.2-133.4 

1.0 

2.0 

6 

Savage & Myers 1963 Tube 3.66-43.72 1.33-2.67 13 

Perry & Joubert 1963 Wind tunnel 4.0 1.0 19 

Sheriff, Gumley & France 1963 Annulus 2.0-10.0 1.0 14 

Gargaud & Paumard 1964 Tube 

Annulus 

1.8-16.0 

10.0-16.0 

1.0-1.67 

1.0 

1 

 

Bettermann 1966 Wind tunnel 2.65-4.18 1.0 20 

Massey 1966 Annulus 7.53-30.15 1.06 15 

Kjellström & Larson 1967 Annulus 2.02-38.52 0.086-4.08 12 

Fuerstein & Rampf 1969 Annulus 2.91-25.04 0.42-2.50 8 

Lawn & Hamlin 1969 Annulus 7.61 1.0 17 

Watson 1970 Annulus 6.49-7.22 1.0 11 

Stephens 1970 Annulus 7.20 1.0 18 

Webb, Eckert & Goldstein 1971 Tube 9.70-77.63 0.97-3.88 7 

Antonia & Luxton 1971 Wind tunnel 4.0 1.0 21 

Antonia & Wood 1975 Wind tunnel 2.0 1.0 22 

Dalle Donne & Meyer 1977 Annulus 4.08-61.5 0.25-2.0 24 

Pineau, Nguyen, Dickin-
son & Belanger 

1987 Wind tunnel 4.0 1.0 23 

 
Using the roughness density parameter model in the form (37, d) and suggesting 
that γ = 1  (completely rough regime) one can write (44) for this case as follows 
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D cs
s

s
( ) ln

( / )
Λ

Λ
Λ

= +
−

0
0

1 1
2κ

φ
β

                                           (47) 

For the constant value of the parameters β φ0,  the function D s( )Λ has a maxi-
mum at Λ s = 2φ . This maximum can be defined from (46) as Λ s rk d= +6 3 1. / , 
and therefore φ = +( . / ) /6 3 1 2k dr . Thus as it follows from the experimental data 
the shape parameter varies with k dr / . To compare the experimental data with 
the arbitrary value of the shape parameter let us introduce the roughness density 
parameter in the form Λ Λφ φ= s / , then the roughness density effect model (47) 
can be rewritten as 

D c d k r( ) ln
( / )

ln( / )Λ
Λ

Λφ
φ

φκ β κ
φ= +

−
−0

1

1 1 1
2

1                               (48) 

 where β β1 0= k dr / .  

In this model the experimental data for various k dr / can be plotted together as 
the graph of the function D D d k rφ φ φ κ φ( ) ( ) / ln( / )Λ Λ= + 1  as well as in the Dalle 
Donne & Meyer's model (46). But as it has been established the shape parameter 
derived from the model (46) isn't a good approximation.  

 
Figure 6: φD vs φΛ -  the solid line. 2D roughness elements data 1-24 has been 
obtained by authors listed in Table 1 
 
Note that in the common case one can suggest that φ φ= +1 1k dr / , where φ1kr  is 
the total length of the frontal and leeward re-circulation zones. The model (46) 
gives for this parameter the unphysical result φ1 315 2= −. /d kr . Thus the experi-
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mental data of various authors listed in Table 1 has been used to find the right 
form of φ  and β 0 . The best correlation for about 130 points is given by  

 φ φ φ= + = −1 1 1
11 1

k
d

B Br q q, exp( ln )/ ,  β β0 1=
d
kr

                           (49) 

where B k d qr s= + = =( / ) / , . , .1 0 625 0121 1Λ β . 

Figure 6 shows Dφ φ( )Λ calculated on (48-49) - the solid line (1), and the experi-
mental data 1-24 of various authors listed in Table 1 (note, we have used values 
R( )∞  from Table 2 of Dalle Donne & Meyer (1977) instead of the original data 
1-18). The symbols description is given in the right part of Figure 6 and in Table 
1. A fragment of the correlated line is shown in the lower part of Figure 6. One 
can see that the predicted roughness density effect (the solid line) is in a good 
agreement with the available experimental data.  
Finally note that formulas (49) are derived for the rough surface composed by 
the transverse rectangular rods and can't be applied to 2D roughness elements of 
another form without additionally verification. 
 
3.6. Model of the total length of the frontal and leeward re-circulation zones 
Analyzing expression (48) one can find two singular points: Λφ → 1 ,  and 
Λ φ → ∞ , which correspond to two branches of function Dφ φ( )Λ . Dalle Donne & 
Meyer (1977) model (46) also has two singular points Λ D

* → 0   and Λ D
* → ∞  . 

Taken into account that  Λ ΛD r sd k* ( / )( )= − 1  one can conclude that these two 
singular points are located at  Λ s → 1   and Λ s → ∞ accordingly.    As we can see 
from the data shown in Figures 5 there is probably another singular point at 
Λ D

* ≈ 1 . The data collected around the point at Λ D
* ≈ 1 has been obtained mainly 

for k dr / = 1. Thus this point can be at  Λ s ≈ 2 . But generally speaking what is 
the physical reason for this point? In Figure 7a the normalised total length of the 
frontal and leeward re-circulation zones (solid lines) which depends on the Dvo-
rak's roughness density parameter φ φ1 1= ( )Λ s and the mean fluid density (broken 
line) calculated for k dr / . ; ;= 0 5 2 5  are shown.   
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Figure 7. а) The normalised total length of the frontal and leeward re-circulation 
zones, φ φ1 1= ( )Λ s (solid lines), and the normalised mean fluid density as a func-
tion of the Dvorak's roughness density parameter (broken lines), calculated for 
k dr / . ; ;= 0 5 2 5 .   

 b)  The roughness density effect on the shift of the mean velocity logarithmic 
profile, D D s= ( )Λ , at fixed k dr / = 5 : the solid line 1 is calculated according to 
model (45)-(49),  The solid line 2 is calculated on (47), (49) whereφ1  was de-
creased on 10%  
 
As we can see from Figure 7a the total length has a maximum located in a 
point Λ Λs s rk d* * ( / )= . According to this the effective mean fluid density has a 
minimum which may be less then zero. As it follows from (39, b), if  τa  is lim-
ited value and µ → 0  then  Ga → ±∞  thus it is a singular point for the function 
D D s= ( )Λ . Physically it means that the frontal and leeward re-circulation zones 
have intersection. As it is well known in this case the skimming flow is realised. 
In the model (49) this regime is counted statistically and probably with some er-
ror. In any case the data over the point Λ D

* ≈ 1 in Figure 5 is replaced to the point 
Λφ = 1 in Figure 6. Note that correlated line goes throughout this data better in 
Figure 6 than in Figure 5.  
An unexpected result has been found out in numerical experiment that function 
D D s= ( )Λ  has one maximum for k dr / .< 1436  and two maximum for 
k dr / .≥ 1436  as shown by the solid lines 1 in  Figure 7b calculated for k dr / = 5 . 
This result is very sensitive to the variations of the value φ1 . If φ1  is multiplied 
by 0.9 then the function D D s= ( )Λ louses the singular point and looks like solid 
line 2 in Figure 7. Now we have only experimental data shown in Figure 7 
which is not sufficient to confirm this result.   
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A restriction for this model can be established if the length scale 
γβφλ 0/)/1( aar Λ−= ++  found out for the rough surface is compared with the main 

turbulent length scale +
0λ  computed for the boundary layer over a smooth surface 

as  ++ ≥ 0λλ . It puts the limitation for the normalised mean fluid density as 
+++ ≈≥Λ− aaa rr /1/)/1( 00 βλφ  for 2D roughness considered above. If this restriction 

is broken then it means that the model (48)-(49) also can't be used properly. 
Supposed that in this case    ++ = 0λλ  one can regularise the function D D s= ( )Λ  in 
the singular point shown in Figure 7,b.     
4 Conclusion 
The turbulent boundary layer model has been derived directly from the Navier-
Stokes equation. The model is based on the special type of the Navier-Stokes 
equation transformation and thus this model doesn't need in any closures for the 
Reynolds stresses.  The model has been testified in the case of the turbulent flow 
over smooth surface. The roughness density effect model with the transitional 
regime parameter has been proposed. With this parameter the equivalent sand 
roughness data obtained by Coleman et. al. (1984) has been corrected in the case 
of turbulent flow over the surfaces with spherical segments and cones. After cor-
rection this data became very close to the original Schlichting's results.  
In the case of 2D roughness elements the experimental data bases published by 
many authors have been analysed and the re-circulation zones total length pa-
rameter has been proposed. The rough surface effect on the turbulent flow is 
calculated. The agreement between computed outcomes and experimental data 
in general is good.     
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