ИССЛЕДОВАНИЕ РАЗМЕРОВ, ОБЕСПЕЧИВАЮЩИХ УСТОЙЧИВОСТЬ ПОДЗЕМНЫХ ПОЛОСТЕЙ В ВЯЗКОУПРУГИХ ГОРНЫХ ПОРОДАХ

Аршинов Г.А. – канд. физ.-мат. наук Кубанский государственный аграрный университет

Методом конечных элементов определяется поле напряжений в окрестности осесимметричных полостей, сооружаемых в вязкоупругой среде. Для оценки их допустимых размеров используется статистическая теория хрупкого разрушения и полученные компоненты напряжений в массиве с полостью.

В основу исследования допустимых размеров подземных полостей положена статистическая теория хрупкого разрушения [1], согласно которой процесс разрушения материала зависит от местного напряжения в точке, где встречается наиболее опасный дефект структуры. Чем крупнее тело, тем больше вероятность обнаружить первичный элемент низкой прочности. Если n – среднее число дефектов в единице объема тела, $F(\sigma)$ – функция распределения дефектов, равная вероятности выявить дефектный элемент, местный предел прочности которого меньше σ , и допускается, что разрушение произойдет в случае превышения напряжением σ минимального предела прочности в совокупности nV дефектов, то функция распределов прочности тела представима в виде [1]:

$$F_{v}(\sigma_{n}) = 1 - [1 - F(\sigma_{n})]^{nV} .$$
 (1)

Пусть σ есть некоторое приведенное напряжение, полученное по какой-нибудь теории прочности для однородного поля напряжений. Если число *nV* достаточно велико и функция $F_V(\sigma)$ удовлетворяет условиям: а) $F_{\nu}(\sigma) = 0$ при $\sigma \leq \sigma_n^0$, $F(\sigma) > 0$ при $\sigma > \sigma_n^0$;

б) при достаточно малых величинах $\varepsilon > 0$ имеет место

$$\lim_{\varepsilon \to 0} \frac{F_{\nu} (\sigma + \varepsilon)}{\varepsilon^{\alpha}} = c ,$$

где с и α – некоторые положительные числа,

то при больших значениях nV справедливо асимптотическое представление $F_V(\sigma)$ [1]:

$$F_{v}(\sigma) = P = 1 - \exp\left[-cnV (\sigma - \sigma_{n}^{0})^{\alpha}\right], \qquad (2)$$

где σ_n^0 – минимальное значение прочности дефектного элемента, в предельном случае равное нулю. Если в (2) произвести замену $cn = 1/V_0 \sigma_c^{\alpha}$, где V_0 , например, объем стандартного образца, σ_c – константа с размерностью напряжения, то

$$P = 1 - \exp \left[\frac{V}{V_0} \left(\frac{y - y_n^0}{y_c} \right)^6 \right] .$$
 (3)

В случае неоднородного напряженного состояния область V разбивается на микрообъемы ΔV_{κ} , в каждом из которых поле напряжений близко к однородному. Вероятность сохранения прочности тела в целом равна произведению вероятностей сохранения прочности каждого микрообъема ΔV_k , поэтому вероятность разрушения объема V вычисляется по формуле

$$P = 1 - \exp\left[-\frac{1}{V_0}\sum_{K} \Delta V_k \left(\frac{\overline{\sigma} - \sigma_n^0}{\sigma_c}\right)^{\alpha}\right], \qquad (4)$$

где суммирование ведется по тем объемам $_{\Delta}V_k$, в которых $\sigma \ge \sigma_n^{0}$, т.е. по области возможного разрушения.

Авторы работы [2] оценивают допустимые размеры выработок в горных породах, сравнивая вероятности разрушения проектируемой и не-

которой успешно эксплуатируемой (эталонной) выработок, вычисляемые по формуле

$$P = 1 - \exp \left[-\frac{1}{V_0} \int_{V_p} \left(\frac{\overline{\sigma} - \sigma_n^0}{\sigma_c} \right)^{\alpha} dV \right], (5)$$

где $\bar{\sigma}$ – приведенное напряжение, определяемое по критерию прочности, а интеграл берется по области вероятного разрушения $V_p(\bar{\sigma} \ge \sigma_n^{0})$.

Предполагается, что проектируемая полость будет устойчивой, если вероятность ее разрушения не превысит вероятности разрушения эталонной емкости, т.е.

$$P \le P_{\perp} \tag{6}$$

В зависимости от геометрии полости величина интеграла в (5) пропорциональна квадрату или кубу ее характерного размера. С учетом (5), (6), получается отношение характерных размеров проектируемой и эталонной полостей

$$\frac{L}{L_{9}} = \begin{pmatrix} \int \left(\frac{\overline{\sigma} - \sigma_{n}}{\sigma_{c}} \right)_{9}^{\alpha} & dv \\ \int \left(\int \left(\frac{\overline{\sigma} - \sigma_{n}}{\sigma_{c}} \right)_{9}^{\alpha} & dv \end{pmatrix} \right)^{\frac{1}{n}} (n=2,3),$$
(7)

где индексом э отмечены величины, соответствующие эталонной полости.

Зная параметры, входящие в (7), и размеры эталона, можно найти величину характерного размера проектируемой емкости. Авторы статьи [2] отмечают, что по косвенным признакам сложно оценить условия успешной эксплуатации, поэтому в качестве эталона проще выбирать устойчивые не эксплуатируемые выработки и желательно сопоставлять геометрически подобные хранилища, что накладывает ограничения на выбор эталона.

В работе [2] исследовались протяженные горизонтальные выработки, имеющие в поперечном сечении эллипс или квадрат. На основе линейной огибающей Мора и полей напряжений, полученных методами плоской задачи теории упругости, строятся зоны вероятного разрушения в окрестности выработок и для различных значений параметров σ_c , δ , σ_n^0 , α табулируются интегральные функции в (5).

Методика определения допустимых размеров, предложенная в [2], применялась в исследовании прочных размеров осесимметричных полостей, сооружаемых в вязкоупругих массивах соляных пород. Экспериментальные исследования прочностных свойств соляных пород свидетельствуют о применимости критерия Мора к анализу прочности стенок подземных сооружений, возводимых в соляных отложениях. Поэтому в расчетах использовались:

линейный критерий Мора

$$\bar{\sigma} = \frac{1}{1 - \sin \delta} \left[\sigma_1 - \sigma_3 - (\sigma_1 + \sigma_3) \sin \delta \right], \qquad (8)$$

где σ_1, σ_2 – главные напряжении ($\sigma_1 > \sigma_3$), δ – угол внутреннего трения породы,

и нелинейная огибающая Мора

$$\sigma_{n} = \frac{\sigma_{1} + \sigma_{3}\sigma_{1}}{\sigma_{1} + 1}, \ \tau_{nt} = \frac{(\sigma_{1} - \sigma_{3})(\sigma_{1})^{\frac{1}{2}}}{\sigma_{1} + 1}, \ \sigma_{1} = \frac{b\sigma_{c}^{a}}{a\sigma_{p}\sigma_{1}^{a-1}},$$
(9)

где σ_c, σ_p – напряжения разрушения при одноосных сжатии и растяжении, *a*,*b* – параметры, принимающие для одного из видов каменной соли числовые значения *a* =2, *b* =1, $\sigma_1, \sigma_2, \sigma_3$ – главные напряжения.

Предполагалось, что проектируемое хранилище будет возведено в соляной толще с такими же прочностными характеристиками, как и соль, в которой сооружена эталонная полость.

В расчетах зон разрушения использовались компоненты исходного поля линейно-упругих напряжений вблизи полостей исследуемых форм, определяемые методом конечных элементов. Релаксация напряжений, вызываемая вязкоупругостью каменной соли, не учитывалась, поскольку снижала их начальную максимальную концентрацию. Для аппроксимации массива с полостью применялись неравномерные сетки кольцевых конечных элементов треугольного поперечного сечения. После замены интегрирования суммированием по конечным элементам, соотношение (9) было преобразовано к виду:

$$\frac{L}{L \ \Im} = \left(\begin{array}{ccc} \sum_{K} \Delta V_{k} \ (\overline{\sigma} - \sigma_{n}^{0})_{\Im}^{\alpha} \\ \frac{\sum_{K} V_{k} \ (\overline{\sigma} - \sigma_{n}^{0})^{\alpha} \end{array} \right)^{\frac{1}{3}} \ . \tag{11}$$

В проведенных расчетах σ_n^0 изменялось в сегменте [0, σ_c] с шагом 0,25 σ_c (σ_c – средний предел прочности образцов каменной соли на одноосное сжатие), а α выбиралось из интервала (0,5) с шагом 1. Параметры δ и χ варьировались соответственно в промежутках (0,25°) с шагом 5° и в (0,1–0,5) с шагом 0,1.

Расчетные напряжения, зоны вероятного разрушения и соотношение (11) позволили оценить допустимые размеры полостей различной геметрии. Эталонной считалась шаровая полость радиуса R и предполагалось, что исследуемые полости будут сооружены на той же глубине и при тех же прочностных параметрах соляных пород, что и эталонная. Определялась

величина отношения *а*/*R*, в котором *a* – радиус осесимметричной проектируемой полости.

В таблицах 1,2 представлены расчетные значения отношения a/R, полученные на основе вышеназванных критериев прочности для различных осесимметричных полостей. Из этих данных следует, что увеличение параметров α и σ_n^0 вызывает уменьшение объема полостей, равнопрочных шаровой, причем с возрастанием отношения характерных размеров e/a (e – половина высоты полости) увеличивается и объем хранилища, т.е. при прочих равных условиях емкости с отношением e/a = 0,4 более объемны в сравнении с подобными им, но более вытянутыми (e/a = 0,2). Среди расчетных равнопрочных конфигураций наибольшими объемами обладают шаровая и цилиндрическая с шаровыми торцами (e/a = 0,4) полости.

Таблица 1. Отношения <i>а/R</i> размеров полостей, соответствующие								
линейному критерию Мора (8)								
α		Величина <i>а/R</i> при δ, равном						
		5 ⁰	10 ⁰		15 ⁰	20 ⁰		25 ⁰
1		2	3		4	5		6
		Элли	ICO	оидальна	я полость	, 6/	a=02	2
				0				
1		1 (1	1	σ _n	$= \sigma_c$		0.7	1.67
1		1,64	1	,73	1,36	1,	95 5	1,67
2		1,25	1	,17	0,88	0,	59	0,48
3		0,94	0	,80	0,58	0,	40	0,54
4		0,70	0	,55	0,59	0,	28	0,25
5		0,52	0	,39	0,26	0,	20	0,18
$\sigma^0_n = 0.75 \sigma_c$								
1		1,62	1	,68	1,95	2.1	1	1,72
2		1,47	1	,54	1,66	1,	58	1,29
3		1,31	1	,35	1,55	1,	21	0,91
4		1,15	1	,14	1,09	0,	95	0,78
5		0,99	0	,95	0,87	0,	75	0,62
			•	$\sigma_n^0 = 0$),50 σ _c			
1		2,12	1	,93	1,63	1,	85	2,21
2		1,86	1	,70	1,59	1,	75	1,88
3		1,64	1	,53	1,50	1,	57	1,56
4		1,46	1	,38	1,36	1,	58	1,50
5		1.29	1	.23	1.22	1.	19	1,09
$\sigma_n^0 = 0.25 \sigma_c$								
1		2,15	2	,15	2,18	1,	85	1,84
2		1,99	1	.98	1.95	1.	74	1,80
3		1.85	1	.81	1.75	1.	64	1.69
4	L	1.70	1	.65	1.57	1.	52	1.55
5		1.55	1	.50	1.45	1	40	1.39
$\sigma_n = 0,00 \sigma_c$								
1		2,25	2	,21	2,16	2,	22	2,00
2		2,14	2	,09	2,05	2,	05	1,87

Г

1	2	3	4	5	6				
3	2,02	1,95	1,91	1,86	1,77				
4	1,89	1,82	1,77	1,71	1,66				
5	1,76	1,69	1,64	1,58	1,54				
	Эллипсоидальная полость, в/а = 0,4								
		$\sigma_n^0 = \sigma_c$							
1	1,49	1,45	1,16	0,85	1,74				
2	1,22	1,10	0,85	0,64	0,61				
3	0,99	0,84	0,64	0,50	0,49				
4	0,80	0,65	0,49	0,40	0,40				
5	0,65	0,52	0,59	0,55	0,55				
		σ^0	$\sigma_n = 0,75 \sigma_c$						
1	1,50	1,45	1,65	1,58	1,33				
2	1,27	1,57	1,44	1,55	1,15				
3	1,21	1,26	1,26	1,12	1,00				
4	1,12	1,14	1,09	0,97	0,88				
5	1,05	1,01	0,95	0,84	0,78				
		σ^0	$\sigma_n = 0,50 \sigma_c$						
1	1,61	1,46	1,28	1,50	1,68				
2	1,48	1,56	1,52	1,47	1,51				
3	1,37	1,50	1,31	1,58	1,36				
4	1,28	1,24	1,25	1,28	1,22				
5	1,20	T,17	1,18	1,17	1,11				
	$\sigma_n^0 = 0.25 \sigma_c$								
1	1,56	1,64	1,66	1,58	1,42				
2	1,51	1,58	1,51	1,37	1,45				
3	1,45	1,49	1,41	1,56	1,42				
4	1,40	1,40	1,54	1,52	1,56				
5	1,55	1,51	1,27	1,27	2,28				
$\underline{^{0}}_{n} = 0$									
1	1,61	1,65	1,58	1,76	1,47				
2	1,57	1,57	1,58	1,59	1,44				
3	1,55	1,52	1,55	1,48	1,42				
4	1,48	1,46	1,47	1,41	1,38				

1	2	3	4	5	6			
5	1,42	1,41	1,40	1,35	1,34			
$\sigma_n = \sigma_c$								
1	2,35	2,27	1,92	1,74	1,67			
2	1,85	1,71	1,48	1,50	1,51			
3	1,41	1,28	1,10	0,97	1,01			
4	1,09	0,96	0,81	0,75	0,76			
5	0,84	0,72	0,60	0,54	0,57			
		σ^0	$n = 0,75 \sigma_c$					
1	2,07	2,59	2,52	2,55	2,58			
2	2,00	2,25	2,29	2,25	2,50			
3	1,86	2,00	2,02	1,99	2,04			
4	1,69	1,76	1,76	1,74	1,78			
5	1,49	1,52	1,52	1,50	1,55			
		σ^0	$n = 0,50 \sigma_c$					
1	2,59	2,40	2,20	2,48	2,61			
2	2,56	2,25	2,22	2,40	2,50			
3	2,16	2,10	2,16	2,28	2,56			
4	1,99	1,97	2,05	2,14	2,21			
5	1,82	1,85	1,91	1,98	2,06			
	$\sigma_n^0 = 0,25 \sigma_c$							
1	2,54	2,60	2,59	2,44	2,51			
2	2,54	2,51	2,44	2,59	2,49			
3	2,29	2,57	2,52	2,55	2,45			
4	2,19	2,22	2,20	2,25	2,56			
5	2,07	2,09	2,09	2,16	2,27			
$\sigma_n^0 = 0$								
1	2,55	2,49	2,50	2,68	2,67			
2	2,56	2,42	2,52	2,56	2,57			
3	2,55	2,57	2,46	2,46	2,50			
4	2,28	2,50	2,57	2,58	2,45			
5	2,20	2,22	2,27	2,29	2,36			

1	2	3	4	5	6		
Цилиндрическая полость с шаровыми торцами, <i>в/а</i> = 0,4							
$\sigma^0_{\ n} = \sigma^0_{\ c}$							
1	1,29	1,22	1,00	0,77	0,59		
2	1,07	0,96	0,77	0,57	0,49		
3	0,88	0,76	0,59	0,44	0,40		
4	0,75	0,60	0,46	0,55	0,55		
5	0,60	0,48	0,56	0,28	0,27		
	-	$\sigma_n^0 =$	= 0,75 o _c				
1	1,18	1,29	1,47				
2	1,14	1,21	1,29				
3	1,08	1,12	1,12	1,01	1,88		
4	1,01	1,02	0,98	0,87	0,76		
5	0,93	0,91	0,85	0,75	0,66		
		$\sigma^0_n =$	$0,50 \sigma^0{}_c$				
1	1,46	1,55	1,12	1,29	1,52		
2	1,55	1,25	1,16	1,50	1,56		
3	1,25	1,16	1,15	1,25	1,21		
4	1,26	1,11	1,11	1,14	1,08		
5	1,08	1,05	1,05	1,04	0,97		
		σ_n^0	=0,25 σ_{c}^{0}				
1	1,45	1,45	1,51	1,25	1,25		
2	1,37	1,40	1,36	1,22	1,27		
3	1,32	1,55	1,37	1,20	1,25		
4	1,27	1,25	1,20	1,17	1,20		
5	1,21	1,18	1,14	1,55	1,14		
$\sigma_n^0 = 0$							
1	1.52	1.52	1.59	1.58	1.52		
2	1,47	1,44	1.59	1,42	1,28		
5	1.41	1.57	1.56	1.55	1.25		
4	1,56	1,52	1.50	1,26	1,22		
5	1,50	1,27	1,25	1,20	1,18		

	Величина a/R при σ_n^0 , равном								
α	σ^0_{c}	$0,75\sigma_{c}^{0}$	$0,5\sigma_c^0$	$0,25 \sigma_{c}^{0}$	σ^0_{c}				
1	2	3	4	5	6				
Эллипсоидальная полость, в/а=0,2									
1	1,91	1,87	1,87	1,85	1,95				
2	1,86	1,84	1,82	1,79	1,79				
3	1,74	1,75	1,72	1,70	1,67				
4	1,59	1,59	1,59	1,58	1,55				
5	1,42	1,44	1,45	1,45	1,43				
	Эллипсоидальн	ая полост	ь, <i>в/а=</i> 0,4						
1	1,47	1,44	1,43	1,59	1,45				
2	1,48	1,46	1,44	1,41	1,40				
3	1,43	1,43	1,41	1,39	1,56				
4	1,37	1,37	1,56	1,35	1,52				
5	1,29	1,30	1,50	1,50	1,27				
	Цилиндрическая полость с шаровыми торцами, <i>в/а</i> =0,2								
1	2,54	2,55	2,55	2,49	2,54				
2	2,52	2,51	2,51	2,46	2,41				
3	2,47	2,46	2,44	2,40	2,51				
4	2,40	2,39	2,57	2,55	2,22				
5	2,32	2,31	2,29	2,24	2,15				
Цилиндрическая полость с шаровыми торцами, в/а=0,4									
1	1,30	1,25	1,26	1,22	1,55				
2	1,32	1,29	1,27	1,24	1,25				
3	1,29	1,27	1,25	1,25	1,21				
4	1,22	1,22	1,21	1,20 1,18					
5	1,15	1,16	1,16	1,16	1,13				

Таблица 2. Отношения *а/R* размеров полостей, соответствующие нелинейному критерию Мора (9)

Список литературы

1. Болотин В.В. Статистические методы в строительной механике. М., 1965.

2. Кислер Л.Н. Об оценке прочности подземных емкостей различной формы в соляных отложениях / Л.Н. Кислер, Н. М. Крюкова, В.А. Мазуров // Труды ВНИИ-промгаза. 1971. Вып. 5.